Pointers

4 References:

Programmer’s Guide to Fortran 90. Brainerd Goldberg and

Adams
Fortran 90 Handbook. Adams et al.

4 What are Fortran pointers?

A pointer variable can be though of as an alias for
another variable.

* They are a descriptor listing the attributes of the
objects (targets) that the pointer may point to, and
the address, if any, of a target. They also encapsulate
the lower and upper bounds of array dimensions,
strides and other metadata.

* They have no associated storage until it is allocated
or otherwise associated.
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4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

ptr
REAL,POINTER :: ptr

REAL,TARGET :: x

e OO0 Terminal — csh — 40x12

x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr
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4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr 4.7
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr
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4+ A pointer is a variable that has been given the pointer
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x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009



4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr—»(4.7
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
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4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr—(8.3
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7 bliss 1 > 4.7
ptr => x

print *, ptr
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4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X

REAL, POINTER :: ptr
REAL,TARGET :: x

eO0 Terminal — csh — 40x12
x = 4.7 bliss 1 > 4.7
B bliss 2 > 8.3
print *, ptr
x = 8.3
print *, ptr
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4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 x2
REAL, POINTER :: ptrl,ptr2 D D
REAL, TARGET :: x1,x2
x1l = 4.7
x2 = 8.3 ® 00 Terminal — csh — 40x12
ptrl => x1

ptr2 => ptrl ! pointer assignment
PRINT *,ptr2

ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl
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4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2
REAL , POINTER :: trl,ptr2
s s 4.7 8.3
REAL, TARGET :: x1,x2
x1l = 4.7
x2 = 8.3 ®0O0 Terminal — csh — 40x12
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PRINT *,ptr2
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PRINT * ,ptrl
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4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

REAL, POINTER :: ptrl,ptr2 ptr1—>
REAL, TARGET :: x1,x2 ptr2—>

x1 = 4.7

x2 = 8.3 » O Terminal — csh — 40x12
ptrl => x1 _

ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT *,ptr2
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ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl
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4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2
REAL, POINTER :: ptrl,ptr2 ptrl—
: tr2—|8.
REAL, TARGET :: x1,x2 4.7 P 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT * ,ptr2
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ptrl = ptr2 ! ordinary assignment
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Tuesday, March 10, 2009



4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
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: tr2—|8.
REAL, TARGET :: x1,x2 8.3 P 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
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ptr2 => x2
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4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2

REAL, POINTER :: ptrl,ptr2 ptrl—
: tr2—|8.

REAL, TARGET :: x1,x2 8.3|Pp 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT *,ptrz bliss 2 > 8.3
ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT *,ptrl
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4 A pointer can have three states:

|. Null. The pointer does not alias any other variable.

2. Associated. The pointer is a alias for another
variable.

3. Undefined. The pointer in not null and not
associated. Until a pointer is either nullified or
associated it is undefined.
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4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL,POINTER :: ptr
ALLOCATE (ptr) ptr
ptr = 8.3

DEALLOCATE (ptr)
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4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr) ptr — D

ptr = 8.3

DEALLOCATE (ptr)
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4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr

ALLOCATE (ptr) ptr —
ptr = 8.3

DEALLOCATE (ptr)
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4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr

ALLOCATE (ptr) ptrq
ptr = 8.3

DEALLOCATE (ptr)
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4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)

Tuesday, March 10, 2009



4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

e —(0)

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)
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4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

per (33

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)
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4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

program.
4 For example

ptr —

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)
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4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

4 For example X

e ()

e OO0 Terminal — csh — 40x10

REAL , POINTER :: ptr
REAL, TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)
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4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

ptr? [xj

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL, TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)
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4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

ptr? [xj

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

bliss 1 > F
NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)
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4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

X
e — ()

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

bliss 1 > F
NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)
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4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

X
e — ()

e OO0 Terminal — csh — 40x10

bliss 1 > F

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr) bliss 2 > T
ptr => x
PRINT *,ASSOCIATED (ptr,x)
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What are there good for?

4 Pointers can be used to construct complicated data
structures

* Arrays of pointers
e Linked list data structures
e Tree data structures
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Arrays of Pointers

4 Suppose you have an array of things and the things are

of different size

4 For example, consider a sparse matrix where the rows

have different numbers of entries.

4 We can define a derived data
type with a pointer as its
sole component, and define
arrays of this data type.

4 The storage for the rows
can be allocated only as
necessary.

4 Array assignment will copy
all components.

TYPE row

REAL, POINTER :: r(:)
END TYPE row

TYPE (row) ,POINTER ::

s(n),t(n)

DO i = 1,n
ALLOCATE (t(1)%r(1:1))
END DO
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Linked Lists

4 Linked lists are a very useful data structure when the

size of the data set is not initially known. They can

grow to accompany any amount of data.

4 Data can be put in order “on the fly”.

4+ A linked list is a list of
nodes. Each node type
contains some data and
a pointer to the next
node.

4 The list type contains
only a pointer to the
first node of the list.

TYPE node

INTEGER :: value
TYPE (node) ,POINTER :: next
END TYPE node

TYPE list
TYPE (node) ,POINTER :: first
END TYPE list
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4 Next we write the code to create a new linked list

TYPE node PROGRAM main
INTEGER :: wvalue
TYPE (node) ,POINTER :: next TYPE (list) :: 1lst

END TYPE node
l1st = new ()

TYPE list
TYPE (node) ,POINTER :: first END PROGRAM main

END TYPE list

4 The call to function new

FUNCTION new list () RESULT (lst) does this:
TYPE (list) :: lst 1st
ALLOCATE (lst%first)

NULLIFY (lst%first%next)

END FUNCTION new list
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4 Next we write the code to create a new linked list
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4 Next we write the code to create a new linked list
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4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)
TYPE (list) :: 1lst
INTEGER :: number 4 The first call to insert does this:

TYPE (node) ,POINTER :: ptrl,ptr2
! find location to put new number lst
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main
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4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl
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ptrlsnext$next => ptr2

END SUBROUTINE insert

83
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lst = new ()
CALL insert (1lst,83)
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END PROGRAM main
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4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2
END SUBROUTINE insert
83
PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main
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4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2
END SUBROUTINE insert
83
PROGRAM main
14

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main
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4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

l1st = new () 14
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main
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4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number)

TYPE (list) 1st
INTEGER :: number
LOGICAL found

TYPE (node) ,POINTER :: ptrl,ptr2
find location to delete number
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.
EXIT
ELSE IF (number==ptr2%value) THEN
found = .TRUE.
EXIT
ELSE
ptrl
ptr2
ENDIF
ENDDO
delete node if found
IF (found) THEN
ptrl%next => ptr2%next
DEALLOCATE (ptr2)
ENDIF

=> ptr2
=> ptr2%next

END SUBROUTINE delete

PROGRAM main

l1st = new ()
CALL insert
CALL insert
CALL insert

(1st,83)
(1st,14)
(1st,17)

CALL delete (lst,17)

main

END PROGRAM

4 The call to delete does this:
1st

14

17

83
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4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number)

TYPE (list) 1st
INTEGER :: number
LOGICAL found

TYPE (node) ,POINTER :: ptrl,ptr2
find location to delete number
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.
EXIT
ELSE IF (number==ptr2%value) THEN
found = .TRUE.
EXIT
ELSE
ptrl
ptr2
ENDIF
ENDDO
delete node if found
IF (found) THEN
ptrl%next => ptr2%next
DEALLOCATE (ptr2)
ENDIF

=> ptr2
=> ptr2%next

END SUBROUTINE delete

PROGRAM main

1st =
CALL
CALL
CALL

new ()
insert
insert
insert

(1st,83)
(1st,14)
(1st,17)
delete

CALL (1st,17)

END PROGRAM main

4 The call to delete does this:
1st

ptrl
ptr2

14

17

83
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4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number) PROGRAM main
TYPE (list) :: 1lst
INTEGER :: number 1st = new ()

CALL insert (1lst,83)
CALL insert (1lst,1l4)
CALL insert (1lst,17)

LOGICAL :: found

TYPE (node) ,POINTER :: ptrl,ptr2

! find location to delete number
ptrl => 1lst%first

ptr2 => ptrl%next

DO

IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.

CALL delete (1st,17)

END PROGRAM main

EXIT 4 The call to delete does this:
ELSE IF (number==ptr2%value) THEN
found = .TRUE. 1st

EXIT
ELSE
ptrl => ptr2
ptr2 => ptr2%next ptrl
ENDIF
ENDDO ptr2
! delete node if found
IF (found) THEN 14
ptrl%next => ptr2%next 17
83

DEALLOCATE (ptr2)
ENDIF

END SUBROUTINE delete
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4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number) PROGRAM main
TYPE (list) :: 1lst
INTEGER :: number 1st = new ()

CALL insert (1lst,83)
CALL insert (1lst,1l4)
CALL insert (1lst,17)

LOGICAL :: found

TYPE (node) ,POINTER :: ptrl,ptr2

! find location to delete number
ptrl => 1lst%first

ptr2 => ptrl%next

DO

IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.

CALL delete (1st,17)

END PROGRAM main

EXIT 4 The call to delete does this:
ELSE IF (number==ptr2%value) THEN
found = .TRUE. 1st

EXIT
ELSE
ptrl => ptr2
ptr2 => ptr2%next ptrl
ENDIF
ENDDO ptr2
! delete node if found l
IF (found) THEN 14
ptrl%next => ptr2%next
83

DEALLOCATE (ptr2)
ENDIF

END SUBROUTINE delete
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4 Next we write the code to print the linked list

SUBROUTINE print list (lst)

TYPE (list) :: 1lst
TYPE (node) ,POINTER :: ptr

ptr => lst3$firstSnext

DO
IF (.NOT.ASSOCIATED (ptr)) EXIT
PRINT * ,ptr3value
ptr => ptr3next
ENDIF
ENDDO

END SUBROUTINE print list
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Binary Trees

4 Storing data is linked list requires n? operations where n
is the number of pieces of data.

4 Storing data in the binary tree only requires n logz n
operations.
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4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree) q__—
tree%value = number
NULLIFY (tree$%left)

NULLIFY (tree%right)

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

ELSE
CALL insert (tree%right,number)

ENDIF

END SUBROUTINE insert
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4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert
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4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree, 14)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert
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4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE 14
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert
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4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE 14
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert 17
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4+ Next we write the code to create a new binary tree

TYPE node

INTEGER :: value
TYPE (node) ,POINTER ::
END TYPE node
TYPE (node) ,POINTER ::

left,right

tree

TYPE (node) :: tree
INTEGER :: number

ALLOCATE (tree)

tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)

ELSE

ENDIF

END SUBROUTINE insert

RECURSIVE SUBROUTINE insert (tree,number)

IF (.NOT.ASSOCIATED (tree)) THEN

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

CALL insert (tree%right,number)

PROGRAM main

NULLIFY (tree)

CALL

CALL
CALL
CALL
CALL

END PROGRAM

insert

insert
insert
insert
insert

tree

(tree, 83)

(tree,14)
(tree,17)
(tree, 91)
(tree,11)

main

83

14 o1

17
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4+ Next we write the code to create a new binary tree

TYPE node

INTEGER :: value
TYPE (node) ,POINTER ::
END TYPE node
TYPE (node) ,POINTER ::

left,right

tree

TYPE (node) :: tree
INTEGER :: number

ALLOCATE (tree)

tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)

ELSE

ENDIF

END SUBROUTINE insert

RECURSIVE SUBROUTINE insert (tree,number)

IF (.NOT.ASSOCIATED (tree)) THEN

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

CALL insert (tree%right,number)

PROGRAM main

NULLIFY (tree)

CALL

CALL
CALL
CALL
CALL

END PROGRAM

insert

insert
insert
insert
insert

tree

(tree, 83)

(tree,14)
(tree,17)
(tree, 91)
(tree,11)

main

83

14 o1

11

17
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