Pointers

4 References:

Programmer’s Guide to Fortran 90. Brainerd Goldberg and

Adams
Fortran 90 Handbook. Adams et al.

4 What are Fortran pointers?

A pointer variable can be though of as an alias for
another variable.

* They are a descriptor listing the attributes of the
objects (targets) that the pointer may point to, and
the address, if any, of a target. They also encapsulate
the lower and upper bounds of array dimensions,
strides and other metadata.

* They have no associated storage until it is allocated
or otherwise associated.

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

ptr
REAL,POINTER :: ptr

REAL,TARGET :: x

e OO0 Terminal — csh — 40x12

x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr 4.7
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr—»(4.7
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr—»(4.7
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7 bliss 1 > 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X
ptr—(8.3
REAL, POINTER :: ptr
REAL,TARGET :: x
e 00 Terminal — csh — 40x12
x = 4.7 bliss 1 > 4.7
ptr => x

print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 A pointer variable can be of any type

4+ A pointer is a variable that has been given the pointer
attribute.
4 A variable aliased or “pointed to” by a pointer must have

the target attribute
4 For Example

X

REAL, POINTER :: ptr
REAL,TARGET :: x

eO0 Terminal — csh — 40x12
x = 4.7 bliss 1 > 4.7
B bliss 2 > 8.3
print *, ptr
x = 8.3
print *, ptr

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 x2
REAL, POINTER :: ptrl,ptr2 D D
REAL, TARGET :: x1,x2
x1l = 4.7
x2 = 8.3 ® 00 Terminal — csh — 40x12
ptrl => x1

ptr2 => ptrl ! pointer assignment
PRINT *,ptr2

ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2
REAL , POINTER :: trl,ptr2
s s 4.7 8.3
REAL, TARGET :: x1,x2
x1l = 4.7
x2 = 8.3 ®0O0 Terminal — csh — 40x12
ptrl => x1

ptr2 => ptrl ! pointer assignment
PRINT *,ptr2

ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

REAL, POINTER :: ptrl,ptr2 ptr1—>
REAL, TARGET :: x1,x2

x1 = 4.7
x2 = 8.3 D O Terminal — csh — 40x12
ptrl => x1

ptr2 => ptrl ! pointer assignment
PRINT *,ptr2

ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

REAL, POINTER :: ptrl,ptr2 ptr1—>
REAL, TARGET :: x1,x2 ptr2—>

x1 = 4.7
x2 = 8.3 D O Terminal — csh — 40x12
ptrl => x1

ptr2 => ptrl ! pointer assignment
PRINT *,ptr2

ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

REAL, POINTER :: ptrl,ptr2 ptr1—>
REAL, TARGET :: x1,x2 ptr2—>

x1 = 4.7

x2 = 8.3 » O Terminal — csh — 40x12
ptrl => x1 _

ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT *,ptr2

ptr2 => x2

ptrl = ptr2 ! ordinary assignment
PRINT * ,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2
REAL, POINTER :: ptrl,ptr2 ptrl—
: tr2—|8.
REAL, TARGET :: x1,x2 4.7 P 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT * ,ptr2
ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT *,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2
REAL, POINTER :: ptrl,ptr2 ptrl—
: tr2—|8.
REAL, TARGET :: x1,x2 8.3 P 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT * ,ptr2
ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT *,ptrl

Tuesday, March 10, 2009

4 There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one

pointer to another
Ordinary assignment (=) transfers values of the

aliased targets in the usual way

4 For Example

x1 X2

REAL, POINTER :: ptrl,ptr2 ptrl—
: tr2—|8.

REAL, TARGET :: x1,x2 8.3|Pp 8.3
x1l = 4.7
x2 = 8.3 e 00 Terminal — csh — 40x12
ptrl => x1 :
ptr2 => ptrl ! pointer assignment bliss 1 > 4.7
PRINT *,ptrz bliss 2 > 8.3
ptr2 => x2
ptrl = ptr2 ! ordinary assignment
PRINT *,ptrl

Tuesday, March 10, 2009

4 A pointer can have three states:

|. Null. The pointer does not alias any other variable.

2. Associated. The pointer is a alias for another
variable.

3. Undefined. The pointer in not null and not
associated. Until a pointer is either nullified or
associated it is undefined.

Tuesday, March 10, 2009

4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL,POINTER :: ptr
ALLOCATE (ptr) ptr
ptr = 8.3

DEALLOCATE (ptr)

Tuesday, March 10, 2009

4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr) ptr — D

ptr = 8.3

DEALLOCATE (ptr)

Tuesday, March 10, 2009

4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr

ALLOCATE (ptr) ptr —
ptr = 8.3

DEALLOCATE (ptr)

Tuesday, March 10, 2009

4 The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

4 The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

4 For example

REAL, POINTER :: ptr

ALLOCATE (ptr) ptrq
ptr = 8.3

DEALLOCATE (ptr)

Tuesday, March 10, 2009

4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)

Tuesday, March 10, 2009

4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

e —(0)

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)

Tuesday, March 10, 2009

4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

per (33

program.
4 For example

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)

Tuesday, March 10, 2009

4 The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

4 Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the

program.
4 For example

ptr —

REAL, POINTER :: ptr
ALLOCATE (ptr)

ptr = 8.3

NULLIFY (ptr)

Tuesday, March 10, 2009

4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

4 For example X

e ()

e OO0 Terminal — csh — 40x10

REAL , POINTER :: ptr
REAL, TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

Tuesday, March 10, 2009

4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

ptr? [xj

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL, TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

Tuesday, March 10, 2009

4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

ptr? [xj

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

bliss 1 > F
NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

Tuesday, March 10, 2009

4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

X
e — ()

e OO0 Terminal — csh — 40x10

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

bliss 1 > F
NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

Tuesday, March 10, 2009

4 The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

4+ The associated intrinsic function returns true or false.

4 The pointer variable must be defined. That is, it must
either be null or alias some data object.

X
e — ()

e OO0 Terminal — csh — 40x10

bliss 1 > F

4 For example

REAL , POINTER :: ptr
REAL ,TARGET :: x

NULLIFY (ptr)

PRINT *,ASSOCIATED (ptr) bliss 2 > T
ptr => x
PRINT *,ASSOCIATED (ptr,x)

Tuesday, March 10, 2009

What are there good for?

4 Pointers can be used to construct complicated data
structures

* Arrays of pointers
e Linked list data structures
e Tree data structures

Tuesday, March 10, 2009

Arrays of Pointers

4 Suppose you have an array of things and the things are

of different size

4 For example, consider a sparse matrix where the rows

have different numbers of entries.

4 We can define a derived data
type with a pointer as its
sole component, and define
arrays of this data type.

4 The storage for the rows
can be allocated only as
necessary.

4 Array assignment will copy
all components.

TYPE row

REAL, POINTER :: r(:)
END TYPE row

TYPE (row) ,POINTER ::

s(n),t(n)

DO i = 1,n
ALLOCATE (t(1)%r(1:1))
END DO

Tuesday, March 10, 2009

Linked Lists

4 Linked lists are a very useful data structure when the

size of the data set is not initially known. They can

grow to accompany any amount of data.

4 Data can be put in order “on the fly”.

4+ A linked list is a list of
nodes. Each node type
contains some data and
a pointer to the next
node.

4 The list type contains
only a pointer to the
first node of the list.

TYPE node

INTEGER :: value
TYPE (node) ,POINTER :: next
END TYPE node

TYPE list
TYPE (node) ,POINTER :: first
END TYPE list

Tuesday, March 10, 2009

4 Next we write the code to create a new linked list

TYPE node PROGRAM main
INTEGER :: wvalue
TYPE (node) ,POINTER :: next TYPE (list) :: 1lst

END TYPE node
l1st = new ()

TYPE list
TYPE (node) ,POINTER :: first END PROGRAM main

END TYPE list

4 The call to function new

FUNCTION new list () RESULT (lst) does this:
TYPE (list) :: lst 1st
ALLOCATE (lst%first)

NULLIFY (lst%first%next)

END FUNCTION new list

Tuesday, March 10, 2009

4 Next we write the code to create a new linked list

TYPE node PROGRAM main
INTEGER :: wvalue
TYPE (node) ,POINTER :: next TYPE (list) :: 1lst

END TYPE node
lst = new ()

TYPE list
TYPE (node) ,POINTER :: first END PROGRAM main

END TYPE list

4 The call to function new

FUNCTION new list () RESULT (lst) does this:

TYPE (list) :: lst 1st

ALLOCATE (lst%first)

NULLIFY (lst%first%next)

END FUNCTION new list

Tuesday, March 10, 2009

4 Next we write the code to create a new linked list

TYPE node PROGRAM main
INTEGER :: wvalue
TYPE (node) ,POINTER :: next TYPE (list) :: 1lst

END TYPE node
l1st = new ()

TYPE list
TYPE (node) ,POINTER :: first END PROGRAM main

END TYPE list

4 The call to function new

FUNCTION new list () RESULT (lst) does this:
TYPE (list) :: lst 1st
ALLOCATE (lst%first)
NULLIFY (lst%first%next) next

END FUNCTION new list

Tuesday, March 10, 2009

4 Next we write the code to create a new linked list

TYPE node PROGRAM main
INTEGER :: wvalue
TYPE (node) ,POINTER :: next TYPE (list) :: 1lst

END TYPE node
l1st = new ()

TYPE list
TYPE (node) ,POINTER :: first END PROGRAM main

END TYPE list

4 The call to function new

FUNCTION new list () RESULT (lst) does this:
TYPE (list) :: lst 1st
ALLOCATE (lst%first)
NULLIFY (lst%first%next) next

END FUNCTION new list

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)
TYPE (list) :: 1lst
INTEGER :: number 4 The first call to insert does this:

TYPE (node) ,POINTER :: ptrl,ptr2
! find location to put new number lst
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next

DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next

DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node
ALLOCATE (ptrl%next) 1st

ptrl%next%$value = number
ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2
END SUBROUTINE insert
83
PROGRAM main

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2
END SUBROUTINE insert
83
PROGRAM main
14

lst = new ()
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to add a node to the linked list

SUBROUTINE insert (lst,number)

TYPE (list) :: 1lst

INTEGER :: number 4 The first call to insert does this:
TYPE (node) ,POINTER :: ptrl,ptr2 ptrl ptrz

! find location to put new number lst

ptrl => 1lst%first 4_—_

ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) EXIT 83
IF (number < ptr2%value) EXIT
ptrl => ptr2
ptr2 => ptr2%next

ENDEO 4 The second call to insert does this:
! insert new node

ALLOCATE (ptrl%next) 1st ptrl

ptrl%next$value = number ptrz

ptrlsnext$next => ptr2

END SUBROUTINE insert

83

PROGRAM main

l1st = new () 14
CALL insert (1lst,83)
CALL insert (1lst,14)

END PROGRAM main

Tuesday, March 10, 2009

4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number)

TYPE (list) 1st
INTEGER :: number
LOGICAL found

TYPE (node) ,POINTER :: ptrl,ptr2
find location to delete number
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.
EXIT
ELSE IF (number==ptr2%value) THEN
found = .TRUE.
EXIT
ELSE
ptrl
ptr2
ENDIF
ENDDO
delete node if found
IF (found) THEN
ptrl%next => ptr2%next
DEALLOCATE (ptr2)
ENDIF

=> ptr2
=> ptr2%next

END SUBROUTINE delete

PROGRAM main

l1st = new ()
CALL insert
CALL insert
CALL insert

(1st,83)
(1st,14)
(1st,17)

CALL delete (lst,17)

main

END PROGRAM

4 The call to delete does this:
1st

14

17

83

Tuesday,

March 10, 2009

4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number)

TYPE (list) 1st
INTEGER :: number
LOGICAL found

TYPE (node) ,POINTER :: ptrl,ptr2
find location to delete number
ptrl => 1lst%first
ptr2 => ptrl%next
DO
IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.
EXIT
ELSE IF (number==ptr2%value) THEN
found = .TRUE.
EXIT
ELSE
ptrl
ptr2
ENDIF
ENDDO
delete node if found
IF (found) THEN
ptrl%next => ptr2%next
DEALLOCATE (ptr2)
ENDIF

=> ptr2
=> ptr2%next

END SUBROUTINE delete

PROGRAM main

1st =
CALL
CALL
CALL

new ()
insert
insert
insert

(1st,83)
(1st,14)
(1st,17)
delete

CALL (1st,17)

END PROGRAM main

4 The call to delete does this:
1st

ptrl
ptr2

14

17

83

Tuesday, March 10, 2009

4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number) PROGRAM main
TYPE (list) :: 1lst
INTEGER :: number 1st = new ()

CALL insert (1lst,83)
CALL insert (1lst,1l4)
CALL insert (1lst,17)

LOGICAL :: found

TYPE (node) ,POINTER :: ptrl,ptr2

! find location to delete number
ptrl => 1lst%first

ptr2 => ptrl%next

DO

IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.

CALL delete (1st,17)

END PROGRAM main

EXIT 4 The call to delete does this:
ELSE IF (number==ptr2%value) THEN
found = .TRUE. 1st

EXIT
ELSE
ptrl => ptr2
ptr2 => ptr2%next ptrl
ENDIF
ENDDO ptr2
! delete node if found
IF (found) THEN 14
ptrl%next => ptr2%next 17
83

DEALLOCATE (ptr2)
ENDIF

END SUBROUTINE delete

Tuesday, March 10, 2009

4 Next we write the code to delete a node from the list

SUBROUTINE delete (lst,number) PROGRAM main
TYPE (list) :: 1lst
INTEGER :: number 1st = new ()

CALL insert (1lst,83)
CALL insert (1lst,1l4)
CALL insert (1lst,17)

LOGICAL :: found

TYPE (node) ,POINTER :: ptrl,ptr2

! find location to delete number
ptrl => 1lst%first

ptr2 => ptrl%next

DO

IF (.NOT.ASSOCIATED (ptr2)) THEN
found = .FALSE.

CALL delete (1st,17)

END PROGRAM main

EXIT 4 The call to delete does this:
ELSE IF (number==ptr2%value) THEN
found = .TRUE. 1st

EXIT
ELSE
ptrl => ptr2
ptr2 => ptr2%next ptrl
ENDIF
ENDDO ptr2
! delete node if found l
IF (found) THEN 14
ptrl%next => ptr2%next
83

DEALLOCATE (ptr2)
ENDIF

END SUBROUTINE delete

Tuesday, March 10, 2009

4 Next we write the code to print the linked list

SUBROUTINE print list (lst)

TYPE (list) :: 1lst
TYPE (node) ,POINTER :: ptr

ptr => lst3$firstSnext

DO
IF (.NOT.ASSOCIATED (ptr)) EXIT
PRINT * ,ptr3value
ptr => ptr3next
ENDIF
ENDDO

END SUBROUTINE print list

Tuesday, March 10, 2009

Binary Trees

4 Storing data is linked list requires n? operations where n
is the number of pieces of data.

4 Storing data in the binary tree only requires n logz n
operations.

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree) q__—
tree%value = number
NULLIFY (tree$%left)

NULLIFY (tree%right)

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

ELSE
CALL insert (tree%right,number)

ENDIF

END SUBROUTINE insert

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree, 14)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE 14
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node PROGRAM main

INTEGER :: value

TYPE (node) ,POINTER :: left,right NULLIFY (tree)
END TYPE node CALL insert (tree,83)
TYPE (node) ,POINTER :: tree CALL insert (tree,1l4)

CALL insert (tree,1l7)
CALL insert (tree,91)
CALL insert (tree,bll)

RECURSIVE SUBROUTINE insert (tree,number)

TYPE (node) :: tree END PROGRAM main
INTEGER :: number

IF (.NOT.ASSOCIATED (tree)) THEN tree
ALLOCATE (tree)
tree%value = number
NULLIFY (tree%left) 83
NULLIFY (tree%right)
ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)
ELSE 14
CALL insert (tree%right,number)
ENDIF

END SUBROUTINE insert 17

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node

INTEGER :: value
TYPE (node) ,POINTER ::
END TYPE node
TYPE (node) ,POINTER ::

left,right

tree

TYPE (node) :: tree
INTEGER :: number

ALLOCATE (tree)

tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)

ELSE

ENDIF

END SUBROUTINE insert

RECURSIVE SUBROUTINE insert (tree,number)

IF (.NOT.ASSOCIATED (tree)) THEN

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

CALL insert (tree%right,number)

PROGRAM main

NULLIFY (tree)

CALL

CALL
CALL
CALL
CALL

END PROGRAM

insert

insert
insert
insert
insert

tree

(tree, 83)

(tree,14)
(tree,17)
(tree, 91)
(tree,11)

main

83

14 o1

17

Tuesday, March 10, 2009

4+ Next we write the code to create a new binary tree

TYPE node

INTEGER :: value
TYPE (node) ,POINTER ::
END TYPE node
TYPE (node) ,POINTER ::

left,right

tree

TYPE (node) :: tree
INTEGER :: number

ALLOCATE (tree)

tree%value = number
NULLIFY (tree$%left)
NULLIFY (tree%right)

ELSE

ENDIF

END SUBROUTINE insert

RECURSIVE SUBROUTINE insert (tree,number)

IF (.NOT.ASSOCIATED (tree)) THEN

ELSE IF (number < tree%$value) THEN
CALL insert (tree%left,number)

CALL insert (tree%right,number)

PROGRAM main

NULLIFY (tree)

CALL

CALL
CALL
CALL
CALL

END PROGRAM

insert

insert
insert
insert
insert

tree

(tree, 83)

(tree,14)
(tree,17)
(tree, 91)
(tree,11)

main

83

14 o1

11

17

Tuesday, March 10, 2009

