
Pointers
✦ References:

Programmer’s Guide to Fortran 90. Brainerd Goldberg and
Adams
Fortran 90 Handbook. Adams et al.

✦ What are Fortran pointers?

• A pointer variable can be though of as an alias for
another variable.

• They are a descriptor listing the attributes of the
objects (targets) that the pointer may point to, and
the address, if any, of a target. They also encapsulate
the lower and upper bounds of array dimensions,
strides and other metadata.

• They have no associated storage until it is allocated
or otherwise associated.

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

4.7

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

4.7

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

4.7

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

bliss 1 > 4.7

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

bliss 1 > 4.7

8.3

Tuesday, March 10, 2009

 REAL,POINTER :: ptr
 REAL,TARGET :: x

 x = 4.7
 ptr => x
 print *, ptr
 x = 8.3
 print *, ptr

x

ptr

✦ A pointer variable can be of any type
✦ A pointer is a variable that has been given the pointer

attribute.
✦ A variable aliased or “pointed to” by a pointer must have

the target attribute
✦ For Example

bliss 1 > 4.7

8.3

bliss 2 > 8.3

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

4.7 8.3

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

4.7 8.3
ptr1

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

4.7 8.3
ptr1

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

ptr2

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

4.7 8.3
ptr1

bliss 1 > 4.7

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

ptr2

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

4.7 8.3
ptr1

bliss 1 > 4.7

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

ptr2

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

ptr1

bliss 1 > 4.7

8.3 8.3

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

ptr2

Tuesday, March 10, 2009

✦ There are two types of pointer assignment:

Pointer assignment (=>) transfers the status of one
pointer to another
Ordinary assignment (=) transfers values of the
aliased targets in the usual way

✦ For Example
x1 x2

ptr1

bliss 1 > 4.7

8.3 8.3

bliss 2 > 8.3

 REAL,POINTER :: ptr1,ptr2
 REAL,TARGET :: x1,x2

 x1 = 4.7
 x2 = 8.3

 ptr1 => x1
 ptr2 => ptr1 ! pointer assignment
 PRINT *,ptr2
 ptr2 => x2
 ptr1 = ptr2 ! ordinary assignment
 PRINT *,ptr1

ptr2

Tuesday, March 10, 2009

✦ A pointer can have three states:

1. Null. The pointer does not alias any other variable.
2. Associated. The pointer is a alias for another

variable.
3. Undefined. The pointer in not null and not

associated. Until a pointer is either nullified or
associated it is undefined.

Tuesday, March 10, 2009

✦ The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

✦ The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

✦ For example

REAL,POINTER :: ptr

ALLOCATE (ptr)

ptr = 8.3

DEALLOCATE (ptr)

ptr

Tuesday, March 10, 2009

✦ The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

✦ The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

✦ For example

REAL,POINTER :: ptr

ALLOCATE (ptr)

ptr = 8.3

DEALLOCATE (ptr)

ptr

Tuesday, March 10, 2009

✦ The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

✦ The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

✦ For example

REAL,POINTER :: ptr

ALLOCATE (ptr)

ptr = 8.3

DEALLOCATE (ptr)

ptr 8.3

Tuesday, March 10, 2009

✦ The allocate statement applied to a pointer will create
space and cause a pointer to refer to that space.

✦ The deallocate statement throws away the space
pointed to by the argument and makes the argument
null

✦ For example

REAL,POINTER :: ptr

ALLOCATE (ptr)

ptr = 8.3

DEALLOCATE (ptr)

ptr

Tuesday, March 10, 2009

✦ The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

✦ Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the
program.

✦ For example

 REAL,POINTER :: ptr
 ALLOCATE (ptr)
 ptr = 8.3
 NULLIFY (ptr)

ptr

Tuesday, March 10, 2009

✦ The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

✦ Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the
program.

✦ For example

 REAL,POINTER :: ptr
 ALLOCATE (ptr)
 ptr = 8.3
 NULLIFY (ptr)

ptr

Tuesday, March 10, 2009

✦ The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

✦ Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the
program.

✦ For example

 REAL,POINTER :: ptr
 ALLOCATE (ptr)
 ptr = 8.3
 NULLIFY (ptr)

ptr 8.3

Tuesday, March 10, 2009

✦ The nullify statement causes a pointer variable to be
in a state of not pointing to anything.

✦ Nullifying a pointer can result in unreferenced storage.
That is, storage which cannot be referenced by the
program.

✦ For example

 REAL,POINTER :: ptr
 ALLOCATE (ptr)
 ptr = 8.3
 NULLIFY (ptr)

ptr 8.3

Tuesday, March 10, 2009

✦ The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

✦ The associated intrinsic function returns true or false.
✦ The pointer variable must be defined. That is, it must

either be null or alias some data object.
✦ For example

REAL,POINTER :: ptr
REAL,TARGET :: x

NULLIFY (ptr)
PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

ptr

x

Tuesday, March 10, 2009

✦ The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

✦ The associated intrinsic function returns true or false.
✦ The pointer variable must be defined. That is, it must

either be null or alias some data object.
✦ For example

REAL,POINTER :: ptr
REAL,TARGET :: x

NULLIFY (ptr)
PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

ptr

x

Tuesday, March 10, 2009

✦ The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

✦ The associated intrinsic function returns true or false.
✦ The pointer variable must be defined. That is, it must

either be null or alias some data object.
✦ For example

REAL,POINTER :: ptr
REAL,TARGET :: x

NULLIFY (ptr)
PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

ptr

x

bliss 1 > F

Tuesday, March 10, 2009

✦ The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

✦ The associated intrinsic function returns true or false.
✦ The pointer variable must be defined. That is, it must

either be null or alias some data object.
✦ For example

REAL,POINTER :: ptr
REAL,TARGET :: x

NULLIFY (ptr)
PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

ptr

x

bliss 1 > F

Tuesday, March 10, 2009

✦ The associated intrinsic function is used to determine
if a pointer variable is pointing to another object.

✦ The associated intrinsic function returns true or false.
✦ The pointer variable must be defined. That is, it must

either be null or alias some data object.
✦ For example

REAL,POINTER :: ptr
REAL,TARGET :: x

NULLIFY (ptr)
PRINT *,ASSOCIATED (ptr)
ptr => x
PRINT *,ASSOCIATED (ptr,x)

ptr

x

bliss 1 > F

bliss 2 > T

Tuesday, March 10, 2009

What are there good for?

✦ Pointers can be used to construct complicated data
structures

• Arrays of pointers
• Linked list data structures
• Tree data structures

Tuesday, March 10, 2009

✦ Suppose you have an array of things and the things are
of different size

✦ For example, consider a sparse matrix where the rows
have different numbers of entries.

TYPE row
 REAL,POINTER :: r(:)
END TYPE row

TYPE (row),POINTER :: s(n),t(n)

✦ We can define a derived data
type with a pointer as its
sole component, and define
arrays of this data type.

✦ The storage for the rows
can be allocated only as
necessary.

✦ Array assignment will copy
all components.

Arrays of Pointers

DO i = 1,n
 ALLOCATE (t(i)%r(1:i))
END DO

s = t

Tuesday, March 10, 2009

✦ Linked lists are a very useful data structure when the
size of the data set is not initially known. They can
grow to accompany any amount of data.

✦ Data can be put in order “on the fly”.

TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: next
END TYPE node

TYPE list
 TYPE (node),POINTER :: first
END TYPE list

✦ A linked list is a list of
nodes. Each node type
contains some data and
a pointer to the next
node.

✦ The list type contains
only a pointer to the
first node of the list.

Linked Lists

Tuesday, March 10, 2009

TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: next
END TYPE node

TYPE list
 TYPE (node),POINTER :: first
END TYPE list

✦ Next we write the code to create a new linked list

PROGRAM main

TYPE (list) :: lst

lst = new ()

END PROGRAM main

lst

✦ The call to function new
does this:FUNCTION new_list () RESULT (lst)

 TYPE (list) :: lst

 ALLOCATE (lst%first)

 NULLIFY (lst%first%next)

END FUNCTION new_list

Tuesday, March 10, 2009

TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: next
END TYPE node

TYPE list
 TYPE (node),POINTER :: first
END TYPE list

✦ Next we write the code to create a new linked list

PROGRAM main

TYPE (list) :: lst

lst = new ()

END PROGRAM main

lst

first

✦ The call to function new
does this:FUNCTION new_list () RESULT (lst)

 TYPE (list) :: lst

 ALLOCATE (lst%first)

 NULLIFY (lst%first%next)

END FUNCTION new_list

Tuesday, March 10, 2009

TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: next
END TYPE node

TYPE list
 TYPE (node),POINTER :: first
END TYPE list

✦ Next we write the code to create a new linked list

PROGRAM main

TYPE (list) :: lst

lst = new ()

END PROGRAM main

lst

first

✦ The call to function new
does this:

next

FUNCTION new_list () RESULT (lst)

 TYPE (list) :: lst

 ALLOCATE (lst%first)

 NULLIFY (lst%first%next)

END FUNCTION new_list

Tuesday, March 10, 2009

TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: next
END TYPE node

TYPE list
 TYPE (node),POINTER :: first
END TYPE list

✦ Next we write the code to create a new linked list

PROGRAM main

TYPE (list) :: lst

lst = new ()

END PROGRAM main

lst

first

✦ The call to function new
does this:

next

FUNCTION new_list () RESULT (lst)

 TYPE (list) :: lst

 ALLOCATE (lst%first)

 NULLIFY (lst%first%next)

END FUNCTION new_list

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst

✦ The second call to insert does this:

83

lst

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

✦ The second call to insert does this:

83

lst

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

✦ The second call to insert does this:

83

lst

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst ptr1
ptr2

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst ptr1
ptr2

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst ptr1
ptr2

14

Tuesday, March 10, 2009

 SUBROUTINE insert (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 TYPE (node),POINTER :: ptr1,ptr2
! find location to put new number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) EXIT
 IF (number < ptr2%value) EXIT
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDDO
! insert new node
 ALLOCATE (ptr1%next)
 ptr1%next%value = number
 ptr1%next%next => ptr2

 END SUBROUTINE insert

✦ Next we write the code to add a node to the linked list

PROGRAM main

lst = new ()
CALL insert (lst,83)
CALL insert (lst,14)

END PROGRAM main

✦ The first call to insert does this:

lst ptr1 ptr2

83

✦ The second call to insert does this:

83

lst ptr1
ptr2

14

Tuesday, March 10, 2009

 PROGRAM main

 lst = new ()
 CALL insert (lst,83)
 CALL insert (lst,14)
 CALL insert (lst,17)

 CALL delete (lst,17)

 END PROGRAM main

 SUBROUTINE delete (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 LOGICAL :: found
 TYPE (node),POINTER :: ptr1,ptr2
! find location to delete number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) THEN
 found = .FALSE.
 EXIT
 ELSE IF (number==ptr2%value) THEN
 found = .TRUE.
 EXIT
 ELSE
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDIF
 ENDDO
! delete node if found
 IF (found) THEN
 ptr1%next => ptr2%next
 DEALLOCATE (ptr2)
 ENDIF

 END SUBROUTINE delete

✦ Next we write the code to delete a node from the list

✦ The call to delete does this:
lst

83
17

14

Tuesday, March 10, 2009

 PROGRAM main

 lst = new ()
 CALL insert (lst,83)
 CALL insert (lst,14)
 CALL insert (lst,17)

 CALL delete (lst,17)

 END PROGRAM main

 SUBROUTINE delete (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 LOGICAL :: found
 TYPE (node),POINTER :: ptr1,ptr2
! find location to delete number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) THEN
 found = .FALSE.
 EXIT
 ELSE IF (number==ptr2%value) THEN
 found = .TRUE.
 EXIT
 ELSE
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDIF
 ENDDO
! delete node if found
 IF (found) THEN
 ptr1%next => ptr2%next
 DEALLOCATE (ptr2)
 ENDIF

 END SUBROUTINE delete

✦ Next we write the code to delete a node from the list

✦ The call to delete does this:
lst

83
17

14

ptr1
ptr2

Tuesday, March 10, 2009

 PROGRAM main

 lst = new ()
 CALL insert (lst,83)
 CALL insert (lst,14)
 CALL insert (lst,17)

 CALL delete (lst,17)

 END PROGRAM main

 SUBROUTINE delete (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 LOGICAL :: found
 TYPE (node),POINTER :: ptr1,ptr2
! find location to delete number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) THEN
 found = .FALSE.
 EXIT
 ELSE IF (number==ptr2%value) THEN
 found = .TRUE.
 EXIT
 ELSE
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDIF
 ENDDO
! delete node if found
 IF (found) THEN
 ptr1%next => ptr2%next
 DEALLOCATE (ptr2)
 ENDIF

 END SUBROUTINE delete

✦ Next we write the code to delete a node from the list

✦ The call to delete does this:
lst

83
17

14

ptr1
ptr2

Tuesday, March 10, 2009

 PROGRAM main

 lst = new ()
 CALL insert (lst,83)
 CALL insert (lst,14)
 CALL insert (lst,17)

 CALL delete (lst,17)

 END PROGRAM main

 SUBROUTINE delete (lst,number)
 TYPE (list) :: lst
 INTEGER :: number

 LOGICAL :: found
 TYPE (node),POINTER :: ptr1,ptr2
! find location to delete number
 ptr1 => lst%first
 ptr2 => ptr1%next
 DO
 IF (.NOT.ASSOCIATED (ptr2)) THEN
 found = .FALSE.
 EXIT
 ELSE IF (number==ptr2%value) THEN
 found = .TRUE.
 EXIT
 ELSE
 ptr1 => ptr2
 ptr2 => ptr2%next
 ENDIF
 ENDDO
! delete node if found
 IF (found) THEN
 ptr1%next => ptr2%next
 DEALLOCATE (ptr2)
 ENDIF

 END SUBROUTINE delete

✦ Next we write the code to delete a node from the list

✦ The call to delete does this:
lst

83

14

ptr1
ptr2

Tuesday, March 10, 2009

 SUBROUTINE print_list (lst)

 TYPE (list) :: lst
 TYPE (node),POINTER :: ptr

 ptr => lst%first%next

 DO
 IF (.NOT.ASSOCIATED (ptr)) EXIT
 PRINT *,ptr%value
 ptr => ptr%next
 ENDIF
 ENDDO

 END SUBROUTINE print_list

✦ Next we write the code to print the linked list

Tuesday, March 10, 2009

Binary Trees
✦ Storing data is linked list requires n2 operations where n

is the number of pieces of data.
✦ Storing data in the binary tree only requires n log2 n

operations.

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

83

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

83

14

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

83

14

17

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

83

14

17

91

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

 TYPE node
 INTEGER :: value
 TYPE (node),POINTER :: left,right
 END TYPE node
 TYPE (node),POINTER :: tree

PROGRAM main

NULLIFY (tree)
CALL insert (tree,83)
CALL insert (tree,14)
CALL insert (tree,17)
CALL insert (tree,91)
CALL insert (tree,11)

END PROGRAM main

tree

83

14

17

91

11

✦ Next we write the code to create a new binary tree

 RECURSIVE SUBROUTINE insert (tree,number)
 TYPE (node) :: tree
 INTEGER :: number

 IF (.NOT.ASSOCIATED (tree)) THEN
 ALLOCATE (tree)
 tree%value = number
 NULLIFY (tree%left)
 NULLIFY (tree%right)
 ELSE IF (number < tree%value) THEN
 CALL insert (tree%left,number)
 ELSE
 CALL insert (tree%right,number)
 ENDIF

 END SUBROUTINE insert

Tuesday, March 10, 2009

