
Dynamical Cores

If you want to learn (a lot) more 
about dynamical cores, take AT604, 
“Atmospheric Modeling,” which will 
be offered in Fall semester 2025.



Where does the computer time go?

50%

50%

Dynamics

Physics



What is the job of a dynamical core?

Predict the distribution of mass

Predict the horizontal wind vector

Determine the vertical motion

Predict the adiabatic tendency of the temperature

Advect moisture and other scalars



Choice of scope, including the smallest scale to be 
represented and the highest model top allowed

Choice of equation set

Choice of prognostic variables

Choice of vertical coordinate system

Choice of a method to discretize the sphere

Choice of a method to discretize the equations

Choices in the design of a dynamical core



The “exact” equations
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Choice of equation set: 
What approximations should be used?

• Quasi-static approximation

• Various anelastic approximations

• Thin atmosphere approximation

• Neglect of some Coriolis terms

• Neglect of the centrifugal acceleration

• Spherical Earth approximation

• Uniform gravity approximation

We are gradually eliminating these approximations.

The quasi-static approximation has been the most useful, and will be the first to go.



The quasi-static approximation is not the 
same as the hydrostatic approximation.

1. Approximate the equation of vertical motion by

Neglect of the vertical acceleration in the equation of vertical motion is almost 
always justified.

2. Determine the pressure by vertical integration of the hydrostatic equation, 
and use that pressure to determine the pressure-gradient term of the horizontal 
equation of motion.

This is justified when the vertical velocity is weak and the weather system is 
much wider than it is tall.

It is not justified for vigorous and deep small-scale weather systems.

∂p
∂z

= −ρg



What happens when the 
quasi-static approximation is used?

1. The equation of vertical motion can no longer be used to determine the vertical velocity. 
It has to be determined somehow, though.

2. The number of prognostic thermodynamic variables decreases from two to one.

3. Vertically propagating sound waves are filtered.

∂p
∂z

= −ρg



The trend to non-hydrostatic models

Faster, massively parallel computers are 
allowing us to use finer grids.

Finer grids can resolve weather systems, 
e.g., thunderstorms, that are not quasi-
static.

For this reason, we are now building 
GCMs that do not use the quasi-static 
approximation.

These new high-resolution GCMs can 
borrow ideas from the well established 
mesoscale modeling community.



Allow a thick atmosphere?
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The combined thickness of the 
troposphere and stratosphere is less 
than 1% of the radius of the Earth. 
In that sense, the Earth’s 
atmosphere is “thin.”



Other atmospheres are not so thin.



The picture on the right is distorted.
In reality, the Equatorial radius is “only” about 20 km larger than the polar radius.

Include oblateness?



The gal (symbol Gal), sometimes called galileo, is a unit of acceleration used extensively in the science of gravimetry, and defined 
as 1 centimeter per second squared (1 cm s-2). The mean value of  is about 1000 gals. Gravity also weakens with height, of course.g

Include nonuniform gravity?

https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Gravimetry


Grace



Categories of model data

Prognostic variables (internal)

Initial conditions (external)

Diagnostic variables (internal)

Boundary conditions (external)

How prognostic variables work:

Temperature  
at end of time step

Temperature  
at beginning of time step= + ( Warming - Cooling )Δt x 

Prognostic variables are “remembered” by the model, from one time step to the next.
Diagnostic variables are not remembered.  They have to be recomputed from scratch on every time step.



Choice of prognostic variables 
(What to time-step?)

• Winds
‣ Zonal, meridional, and vertical components
‣ Angular momentum instead of the zonal component
‣ Vertical component of the vorticity, and divergence of 

the horizontal wind vector
‣ Horizontal vorticity vector

• Thermodynamic energy
‣ Temperature
‣ Potential temperature
‣ Entropy
‣ Moist entropy

• Moisture
‣ Water vapor mixing ratio
‣ Total water mixing ratio
‣ Condensed water species

All choices give the same result in the continuous system, but not in the discrete system.



Discretizing the sphere

A field (e.g., temperature) that is defined on a 
continuous spherical surface has infinitely many 
degrees of freedom.

In a model, only a finite number of “discrete” 
degrees of freedom can be kept.



Discretizing the sphere with grids

Grids on the sphereRevised Monday 2nd May, 2022 at 17:51

There have been attempts to use grids based on octahedrons (e.g., McGregor (1996);
Purser and Rančcić (1998)).

A spiraling “Fibonacci grid” has also been suggested (Swinbank and James Purser,
2006).

Mesoscale & Microscale Meteorology Division / ESSL / NCAR

MPAS

Future Weather/Climate Atmospheric Dynamic Core

Consideration of alternative spatial discretizations:

Priority Requirements:

Lat-Lon Icosahedral-triangles Icosahedral-hexagons Cubed Sphere Yin-Yang

•  Efficient on existing and proposed supercomputer architectures

•  Scales well on massively parallel computers

•  Well suited for cloud (nonhydrostatic) to global scales

•  Capability for local grid refinement and regional domains

•  Conserves at least mass and scalar quantities

Problems with lat-lon coordinate for global models

• Pole singularities require special filtering

• Polar filters do not scale well on massively parallel computers

• Highly anisotropic grid cells at high latitudes

Figure 25.8: Various ways of discretizing the sphere. This figure was made by Bill Skamarock of
NCAR.

Grids based on icosahedra offer an attractive framework for simulation of the global
circulation of the atmosphere and ocean. Their advantages include almost uniform and
quasi-isotropic resolution over the sphere. Such grids are termed “geodesic,” because they
resemble the geodesic domes designed by Buckminster Fuller. Williamson (1968) and
Sadourny et al. (1968) simultaneously proposed using geodesic grids based on equilateral
spherical triangles that are nearly equal in area. Because the grid points are not regularly
spaced and do not lie in orthogonal rows and columns, alternative finite-difference schemes
are used to discretize the equations. Initial tests using the grid proved encouraging, and
further studies were carried out. These were reported by Sadourny et al. (1968), Sadourny
and Morel (1969), Sadourny (1969), Williamson (1970), and Masuda and Ohnishi (1986).

The grids are constructed from an icosahedron (20 faces and 12 vertices), which is
one of the five Platonic solids. A conceptually simple scheme for constructing a spherical
geodesic grid is to divide the edges of the icosahedral faces into equal lengths, create new
smaller equilateral triangles in the plane, and then project onto the sphere. See Fig. 25.9.
One can construct a more homogeneous grid by partitioning the spherical equilateral trian-
gles instead. Williamson (1968) and Sadourny et al. (1968) use slightly different techniques
to construct their grids. However, both begin by partitioning the spherical icosahedral trian-
gle. On these geodesic grids, all but twelve of the cells are hexagons. The remaining twelve
are pentagons. They are associated with the twelve vertices of the original icosahedron.

Williamson (1968) chose the non-divergent shallow water equations to test the new grid.
He solved the non-divergent barotropic vorticity equation discussed in 24. It is repeated
here for your convenience:

∂z
∂ t

= J (h ,y) , (25.52)
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been extensively covered in the literature. For a detailed
analysis of point systems on the sphere, refer to [15] which
is, to our knowledge, the latest review on this topic.

We start by briefly defining key concepts for understand-
ing the remainder of this work. An integration lattice for
functions over R2 is a lattice containing Z2 as a subset [8],
[24]. Let us now call PN the subset of points of a lattice L
contained in ½0; 1Þ2 and projected onto the surface of the
unit sphere. If L is an integration lattice then PN is said to
form a spherical integration lattice. If L is not an integration
lattice, then PN forms a spherical grid.

Spherical Fibonacci integration lattices (SFIL), used for
numerical integration on the sphere, were first introduced by
Hannay andNye [14]. In their paper the authors show that, by
projecting a unit square Fibonacci integration lattice (as
defined by Niederreiter and Sloan [21]) onto a sphere through
a Lambert cylindrical equal-area transform, particularly effi-
cient point sets for numerical integration over the sphere can
be found. Furthermore, they highlight the topological proper-
ties that make the SFIL so efficient for numerical integration
on the sphere. These good properties for numerical integra-
tion have been analyzed in details by Aistleitner et al. [1].
Swinbank and Purser [28] further improve the point set prop-
erties by shifting the z-coordinate of the projected points so as
to obtain a better distribution at the poles. Additionaly, they
introduce the spherical Fibonacci grids (SFG), a point set
whose size is not restricted to Fibonacci numbers as opposed
to SFIL. Swinbank and Purser also derive interesting proper-
ties of the SFG which we use in this paper. Gonz!alez [12]
applies SFGs to the measurement of areas on a sphere. SFGs
are also appropriate for numerical integration of the shading
integral as shown byMarques et al. [19]. They show that SFGs
outperform all familiar QMC point sets for diffuse and glossy
reflectionswhen evaluating shading integrals.

However, compared with standard Monte Carlo impor-
tance sampling methods such as [3] or digital net sequences,
such as Halton or Sobol sequences, SFGs have the disadvan-
tage of not being extensible. This means that if the integration
error is deemed too significant, requiring a larger point set,
none of the points of the previous point set will be included in
the new larger point set, thus wasting all previously-drawn
samples. To solve this problem in the case of planar

integration lattices, Hickernell et al. [16] introduce the concept
of extensible integration lattice sequences. They are able to extend
unit square rank-1 integration lattices [8] (i.e., integration latti-
ces which can be obtained by the rule pk ¼ k

N vmod ð1Þ, where
v is the generating vector with coordinates in N and N the
point set size), hence generating infinite sequences of points
similar to digital net sequences. A similar approach has been
applied in [9] to anti-aliasing and texture representation. In
[18], the author proposes a shifted replicationmethod in order
to extend a rank-1 integration lattice for generating stratified
samples set. However, all these methods cannot be applied to
our problem since SFGs projected onto the unit square are not
integration lattices as we explain in this paper. Cools and
Nuyens [7] analyze the specific case of extensions of Fibonacci
integration lattices but again, their solution does not apply to
SFGs for the same reason as above. Furthermore, when lifted
onto the sphere, the extended point sets no longer exhibit the
nice topological properties of the original SFIL. Our goal in
this paper is thus to propose a solution for extending SFGs
which preserves the properties that make the SFG point set
efficient for spherical integration. An example of the resulting
point set, named E-SFG (extended spherical Fibonacci grid), is
shown in Fig. 1.

3 BACKGROUND

Spherical Fibonacci grids and some of their properties have
been studied in previous works. In this section, we state the
most relevant properties for our goal. Some of them, such as
the basis vectors of an SFG, have not been formally demon-
strated in the related work. In this case, we state these prop-
erties in this section and provide a formal derivation as part
of our contribution in the following sections.

SFGs are directly defined on the unit sphere. Given the
desired number of points N , the spherical coordinates ðu;fÞ
of the jth point of the SFG are given by [19], [28]

uj ¼ arccosð1% 2j=NÞ
fj ¼ 2jpF%1 mod 2p

!
0 & j < N; (1)

where uj is the elevation angle, fj is the azimuth angle, and
F ¼ ð1þ

ffiffiffi
5
p

Þ=2 is the golden ratio. An example of the
resulting point set for N ¼ 20 is given in Fig. 2a. In an SFG,

Fig. 1. Example of our extensible spherical Fibonacci grid (E-SFG). The initial spherical grid in (a) contains 64 points shown in blue. In (b) the initial
grid is extended to 256 points, by adding 192 new points (marked in red). The resulting point set is further extended in (c) yielding a total of 1024
points. Finally, (d) shows an example of a classical (not extensible) spherical Fibonacci grid (SFG). The figures show that our E-SFG algorithm can
generate extensible spherical point sets with a distribution visually similar to those of classical SFG. Quantitative results shown later in the paper
confirm this observation. They show that our approach yields extensible point sets with similar properties in terms of spherical discrepancy and root
mean square integration error, overcoming the fixed-size constraint of classic spherical Fibonacci grids without impairing their properties.
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generate extensible spherical point sets with a distribution visually similar to those of classical SFG. Quantitative results shown later in the paper
confirm this observation. They show that our approach yields extensible point sets with similar properties in terms of spherical discrepancy and root
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Tri-polar ocean grid



The Platonic Solids

These are the only regular polyhedrons.



Tiling the plane

N M
3 6
4 4
5 10/3
6 3
7 14/5
∞ 2

Suppose that a regular convex polygon has  sides. The interior angles, , must sum to , 
so

.

Next, suppose that  polygons come together at each vertex. The exterior angles, , must 
sum to , so

.

Since the interior angles of a triangle must sum to , we can write 

,

or

.

Combining these three equations, we find that

.

Trying different values of , we find that  is an integer only for  or .

Conclusion: Triangles, squares, and hexagons are the only convex regular polygons that tile 
the plane.

N α 2π

Nα = 2π
M β

2π
Mβ = 2π

π

α + 2 ( β
2 ) = π

α + β = π

M =
2N

N − 2
N M N = 3, 4, 6

𝛽/2
𝛼

𝛽/2 M = 3

N = 6



Other ways to tile the plane

Escher Penrose



Tiling the Plane

Triangles
nest.

Squares
nest.

Hexagons
don’t nest.

8 neighbors
4 wall neighbors

6 neighbors
6 wall neighbors

12 neighbors
3 wall neighbors



All places the same.
All directions the same.
All neighbors the same.

8 neighbors
4 wall neighbors

6 neighbors
6 wall neighbors

12 neighbors
3 wall neighbors



Geodesic Grids

Icosahedron Bisect each edge
and connect the dots

Pop out onto
the unit sphere

And so on, until we reach our target resolution...



Laying it out

north pole

south pole



All cells are nearly the same size 
(within about 5% in terms of area).

The grid is quasi-isotropic.

CFL for advection is not an issue.

Merits of the 
geodesic grid



a numerical integration, in which the grid points on the
raw grid are connected to each other with springs. Non-
uniform horizontal resolution can be achieved by allow-
ing the ‘‘spring constant’’ to vary in space, and this is
a major motivation for the approach. Here we consider
only spatially uniform spring constants.
We repeated the calculations described by Tomita

et al. (2001) and Tomita et al. (2002) with the two values
of the tuning parameter, k5 0:8 and k 5 1.1, which cor-
respond to the tuning parameter b in the original pa-
pers. The notation is changed to avoid confusion with b
used in section 3c. Larger values of k give more ho-
mogeneous distributions of grid points. It appears that
there is a practical upper limit for k; our algorithm was
stable only up to k 5 1.1, while the highest value of k
used by Tomita et al. (2001, 2002) was 1.2. We stopped
the integrations when the maximum displacement of
grid points between the time steps becomes less than or
equal to 0:33 1024 m. After the spring grid points were

located, Tomita and colleagues selected the centroids
of the triangular regions as the cell corners. In our
implementation, on the other hand, the cell corners
were obtained by using the Voronoi principle, as for the
tweaked grid.
Table 2 shows some basic properties of the spring grid,

obtained using k5 1.1 and raw grids up toG12. Through
the spring dynamics, the ratio of the smallest to the
largest grid sizes (fifth column) and the ratio of the
shortest to the longest grid distances (fourth column) do
not change significantly. Although not shown here, the
cell sizes are distributed much more smoothly on the
spring grid than on the unoptimized and tweaked grids,
which are shown in Table 1. There is an improvement in
the maximum of l/d (last column) compared to the raw
grid although the improvement is not as great as that
obtained by tweaking.
Figure 10 shows L2- and L‘-norm errors for each

operator on the spring grid, obtained with k 5 1.1 and
k 5 0.8. We apply the spring dynamics optimization up
to G10, which is sufficient for a comparison of the results
with those from the raw and tweaked grids. Truncation
errors are reduced overall, compared to the raw grid,
with both k 5 1.1 and k 5 0.8. The L2-error (or mean
error) convergence rate of the divergence operator is
almost second order, and is between the first and second
orders for the Laplacian and Jacobian operators. There
is a small improvement in the mean error for k 5 1.1,
relative to k 5 0.8. The L‘-error (or maximum error)
convergence rate of the three operators is less than first
order, but it is still quite a bit better than the conver-
gence rate on the raw grid. Compared to k5 0.8, the use
of k5 1.1 appearsmore effectively reduce themaximum
errors and the convergence rates, although it has little
effect on the mean error. The convergence rates are

FIG. 7. An illustration of the tweaking algorithm on a couple of
neighboring cells. The cell centers (solid black circles) are moved
to their new positions (gray circles) to satisfy l 5 0. The cell wall
already bisects the line connecting the cell centers at a right angle
because of the use of Voronoi corners.

TABLE 1. Some properties of the tweaked and raw grids. The raw grid properties are shown in the parentheses. Averaged grid distance is
the arithmetic average of the maximum and minimum of grid distances.

Grid
No. of grid
points N

Avg grid
distance ‘ (km)

Ratio of shortest to
longest grid distance (%)

Ratio of smallest to
largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)
G1 42 3709.8 88.1 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)
G2 162 1908.8 82.0 (84.8) 91.6 (84.2) 5.8020 (9.9718) 3.6172 (3.6700)
G3 642 961.4 79.8 (83.9) 94.2 (76.3) 3.0933 (9.6888) 2.0437 (2.1255)
G4 2562 481.6 79.0 (83.7) 94.8 (74.1) 1.6020 (9.6758) 1.0699 (1.1363)
G5 10 242 240.9 78.7 (83.6) 95.0 (73.6) 0.8168 (9.6726) 0.5447 (0.5867)
G6 40 962 120.4 78.6 (83.6) 95.2 (73.4) 0.4128 (9.6718) 0.2743 (0.2980)
G7 163 842 60.2 78.6 (83.6) 95.2 (73.4) 0.2075 (9.6714) 0.1375 (0.1501)
G8 655 362 30.1 78.6 (83.6) 95.3 (73.4) 0.1041 (9.6715) 0.0688 (0.0753)
G9 2 621 442 15.0 78.6 (83.6) 95.3 (73.4) 0.0522 (9.6715) 0.0344 (0.0377)
G10 10 485 762 7.53 78.6 (83.6) 95.3 (73.4) 0.0260 (9.6715) 0.0172 (0.0189)
G11 41 943 042 3.76 78.6 (83.6) 95.3 (73.4) 0.0131 (9.6715) 0.0086 (0.0094)
G12 167 772 162 1.88 78.6 (83.6) 95.3 (73.4) 0.0065 (9.6715) 0.0043 (0.0047)
G13 671 088 642 0.94 78.6 (83.6) 95.3 (73.4) 0.0056 (9.6715) 0.0021 (0.0023)
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The spectral method will be discussed later.

Discretizing the sphere with spherical harmonics



Choice of vertical coordinate system
(Stairways to heaven)

Coordinate Strengths Weaknesses

Height Most intuititive
Intersects topography;  

Complicated equation for vertical velocity 
if quasi-static approximation is used

Pressure
Simple continuity equation; 

Simple computation of vertical velocity 
Pressure-gradient force is a gradient;

Intersects topography  
in different places on different days

Sigma Follows the lower boundary;  
Constant at the top and bottom of the model Issue with the pressure-gradient force

Hybrid sigma-pressure Follows the lower boundary;  
Constant at the top and bottom of the model Smaller issue with the pressure-gradient force

Theta
Minimizes vertical advection; 

Pressure-gradient force is a gradient; 
Convenient for computing PV

Not strictly monotonic with height; 
Low vertical resolution in mixed layers;  

Intersects topography 
in different places on different days

Hybrid sigma-theta
Follows the lower boundary; 

Behaves like theta away from the lower boundary; 
Can work even when theta is not monotonic with height

Complicated equation for vertical velocity 
if quasi-static approximation is used

Any vertical coordinate must be monotonic with height.



Sigma coordinates

σ ≡
p − pT

pS − pT

σS = 1

σT = 0
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where s is the dry static energy.

The HPGF in q -coordinates can be written as

HPGF =�a—q p�—q f . (22.106)

From (22.103) it follows that

—q p = cp

⇣ p
RT

⌘
—q T. (22.107)

Substitution of (22.107) into (22.106) gives

HGPF =�—q s . (22.108)

Of course, q -surfaces can intersect the lower boundary, but following Lorenz (1955) we
can consider that they actually follow along the boundary, like coats of paint. This leads to
the concept of “massless layers,” as shown in the middle panel of Fig. 22.4.

Figure 22.4: Coordinate surfaces with topography: Left, the s -coordinate. Center, the q -coordinate.
Right, a hybrid s -q coordinate.

Obviously, a model that follows the massless-layer approach has to avoid producing
negative mass. This can be done, for example, through the use of flux-corrected transport.
Nevertheless, this practical difficulty has led most modelers to avoid q -coordinates up to
this time.

The massless layer approach leads us to use values of q that are colder than any actu-
ally present in an atmospheric column, particularly in the tropics of a global model. The
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Example of a finite-difference scheme: 
The “upstream scheme” for advection of a scalar

Chapter 7

The upstream scheme

7.1 From upstream to downstream

We now investigate the solution of one possible numerical scheme for (6.13). We construct
a grid, as in Fig. 7.1. One of the infinitely many possible finite-difference approximations
to (6.13) is

An+1
j �An

j

D t
+ c

✓An
j �An

j�1

Dx

◆
= 0 . (7.1)

Here we have used the forward difference quotient in time and the backward difference
quotient in space. If we know An

j at some time level n for all j, then we can solve (7.1)
for An+1

j at the next time level, n+1. For c > 0, (7.1) is called the “upstream” scheme. It
is one-sided or asymmetric in both space and time. It seems naturally suited to modeling
advection, in which air comes from the upstream side and goes to the downstream, as time
passes by. The upstream scheme has some serious weaknesses, but it also has some very
useful properties. It is a scheme worth remembering. That’s why I put (7.1) in a box.

Because

An+1
j �An

j

D t
! ∂A

∂ t
as D t ! 0, (7.2)

and

An
j �An

j�1

Dx
! ∂A

∂x
as Dx ! 0, (7.3)
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schemes, i.e., we can and should design the flux form of an advection scheme for A in such
a way that for A ⌘ 1 we get the scheme for the continuity equation.

Obviously we could use the continuity equation to go back from the flux form to the
advective form. Throughout the rest of this book we will frequently use continuity to
transform back and forth between flux form and advective form.

Suppose that we integrate (6.8) over a closed or periodic domain R. Here“closed”
means that there is no flux of mass across the boundary of R, and “periodic” means that the
domain has no boundaries (e.g., a spherical shell). For either closed or periodic boundaries
we find, using Gauss’s Theorem, that

d
dt

Z

R
rdR = 0. (6.11)

This simply states that mass is conserved within the domain. Similarly, for the case of
closed or periodic boundaries we can integrate (6.10) over R to obtain

d
dt

Z

R
rAdR =

Z

R
rSdR. (6.12)

This says that the mass-weighted average value of A is conserved within the domain, except
for the effects of sources and sinks. We can describe (6.11) and (6.12) as integral forms
of the conservation equations for mass and A, respectively. As discussed above, they can
be obtained directly from the flux forms of the continuity equation and the conservation
equation for A, respectively, using Gauss’s theorem.

6.5 Characteristics

Consider the one-dimensional advection equation, given by

✓
∂A
∂ t

◆

x
+ c

✓
∂A
∂x

◆

t
= 0, (6.13)

where A = A(x, t). This is the advective form of the conservation equation for A, with the
source term set to zero. The physical meaning of (6.13) is that A remains constant at the
position of a particle that moves in the x-direction with speed c. We can interpret A as
a “conserved” property of the particle. We will assume for now that c is independent of
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This a necessary condition for convergence of the upstream scheme.

Notice that if c is negative (giving what we might call a “downstream” scheme), then
the characteristic lies outside the domain of dependence shown in the figure. Of course, for
c < 0 we can use

An+1
j �An

j

D t
+ c

✓An
j+1 �An

j

Dx

◆
= 0, (7.8)

in place of (7.1). For c < 0, Eq. (7.8) is the appropriate form of the upstream scheme.

A computer program can have an “if-test” that checks the sign of c, and uses (7.1) if
c � 0, and (7.8) if c < 0. If-tests can cause slow execution on certain types of computers,
however, and besides, if-tests are ugly and reduce the readability of a code. If we define

c+ ⌘ c+ |c|
2

� 0, and c� ⌘ c� |c|
2

 0, (7.9)

then a “generalized” upstream scheme can be written as

An+1
j �An

j

D t
+ c+

✓An
j �An

j�1

Dx

◆
+ c�

✓An
j+1 �An

j

Dx

◆
= 0. (7.10)

This form avoids the use of if -tests and is also convenient for use in pencil-and-paper
analysis, as discussed later.

7.4 Interpolation and extrapolation

Referring back to (7.1), we can rewrite the upstream scheme as

An+1
j = An

j (1�µ)+An
j�1µ. (7.11)

This scheme has the form of either an interpolation or an extrapolation, depending on the
value of µ . To see this, refer to Figure 7.3. Along the line plotted in the figure
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Here .μ ≡ cΔt/Δx
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Figure 7.2: The shaded area represents the “domain of dependence” of the solution of the upstream
scheme at the point ( jDx,nD t).

Consider the characteristic that passes through the point ( jDx,nD t), i.e., x� ct = x0,
where x0 is a constant. For the case shown in Fig. 7.2, that characteristic does not lie in
the domain of dependence. As a result, there is no hope of obtaining smaller discretization
error, no matter how small Dx and D t become, as long as mu is unchanged, because the
true solution depends only on the initial value of A at the single point (x0,0) which cannot
influence An

j . You could change A(x0,0) (and hence the exact solution A( jDx,nD t) ), but
the computed solution An

j would remain the same. In such a case, the error of the solution
usually will not be decreased by refining the grid. We conclude that if the value of c is such
that x0 lies outside of the domain of dependence, it is not possible for the solution of the
finite-difference equation to approach the solution of the differential equation, no matter
how fine the mesh becomes. The finite-difference equation converges to the differential
equation, but the solution of the finite-difference equation does not converge to the solution
of the differential equation. The truncation error goes to zero, but the discretization error
does not. Bummer.

The condition for x0 to lie inside the domain of dependence is

0  µ  1 . (7.7)
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The shaded area is the domain of dependence for .An+1
j

This is for written  . For   
we would use  and .

c > 0 c < 0
j j + 1



Computational instability

Computational instability is the unbounded growth of discretization errors.

Instability leads to noise, but a noisy scheme is not necessarily unstable.

There are multiple types of numerical instability, just as there are multiple 
types of physical instability.

“Linear” instability can sometimes be avoided by using a sufficiently 
small time step.
“Nonlinear” instability can occur even with continuous time 
derivatives.

Instability usually occurs on the smallest scales represented in a model.

Unstable schemes can often be identified by a pencil-and-paper analysis, 
before a single line of code is written.



Is the upstream scheme stable?
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A = An
j�1 �

�
x� x j�1

�✓An
j �An

j�1

x j � x j�1

◆

= An
j


1�

✓
x� x j�1

x j � x j�1

◆�

j
+An

j�1

✓
x� x j�1

x j � x j�1

◆
,

(7.12)

which has the same form as our scheme if we identify

A ⌘ An+1
j and µ ⌘

x� x j�1

x j � x j�1
. (7.13)

For 0  µ  1 we have interpolation. For µ < 0 or µ > 1 we have extrapolation.

x
jj −1

A

Aj
n

Aj−1
n

Figure 7.3: Diagram illustrating the concepts of interpolation and extrapolation. See text for details.

For the case of interpolation, the value of An+1
j will be intermediate between An

j�1 and
An

j , so it is impossible for An+1
j to “blow up,” no matter how many time steps have been

taken. The repeated interpolation can lead to an unrealistic smoothing of the solution,
however.

Interpolation also implies that if An
j�1 and An

j are both positive, then An+1
j will be posi-

tive too. This is a good thing, for example, if A represents the mixing ratio of water vapor.
More discussion is given later.

For the case of extrapolation, An+1
j will lie outside the range of An

j�1 and An
j . This is

not necessarily a problem if we are only taking one (reasonably small) time step, but after
a sufficient number of time steps the solution will become useless.
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This a necessary condition for convergence of the upstream scheme.

Notice that if c is negative (giving what we might call a “downstream” scheme), then
the characteristic lies outside the domain of dependence shown in the figure. Of course, for
c < 0 we can use

An+1
j �An

j

D t
+ c

✓An
j+1 �An

j

Dx

◆
= 0, (7.8)

in place of (7.1). For c < 0, Eq. (7.8) is the appropriate form of the upstream scheme.

A computer program can have an “if-test” that checks the sign of c, and uses (7.1) if
c � 0, and (7.8) if c < 0. If-tests can cause slow execution on certain types of computers,
however, and besides, if-tests are ugly and reduce the readability of a code. If we define

c+ ⌘ c+ |c|
2

� 0, and c� ⌘ c� |c|
2

 0, (7.9)

then a “generalized” upstream scheme can be written as

An+1
j �An

j

D t
+ c+

✓An
j �An

j�1

Dx

◆
+ c�

✓An
j+1 �An

j

Dx

◆
= 0. (7.10)

This form avoids the use of if -tests and is also convenient for use in pencil-and-paper
analysis, as discussed later.

7.4 Interpolation and extrapolation

Referring back to (7.1), we can rewrite the upstream scheme as

An+1
j = An

j (1�µ)+An
j�1µ. (7.11)

This scheme has the form of either an interpolation or an extrapolation, depending on the
value of µ . To see this, refer to Figure 7.3. Along the line plotted in the figure
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For , the scheme interpolates, so that 
 falls in between  and . Blow-up is 

therefore impossible, but damping can smooth out 
the solution excessively. 

For  or , the scheme extrapolates, so 
that  lies outside the range of  and . 
With more and more time steps, the solution will 
run away.

0 ≤ μ ≤ 1
An+1

j An
j An

j−1

μ < 0 μ > 1
An+1

j An
j An

j−1

Conclusion: The scheme is stable for , and unstable for  or .0 ≤ μ ≤ 1 μ < 0 μ > 1

where μ ≡ cΔt/Δx



Circling back

For , the solution lies within the domain of dependence.
The scheme is stable when the solution lies within the domain of dependence.

0 ≤ μ ≤ 1
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Figure 7.2: The shaded area represents the “domain of dependence” of the solution of the upstream
scheme at the point ( jDx,nD t).

Consider the characteristic that passes through the point ( jDx,nD t), i.e., x� ct = x0,
where x0 is a constant. For the case shown in Fig. 7.2, that characteristic does not lie in
the domain of dependence. As a result, there is no hope of obtaining smaller discretization
error, no matter how small Dx and D t become, as long as mu is unchanged, because the
true solution depends only on the initial value of A at the single point (x0,0) which cannot
influence An

j . You could change A(x0,0) (and hence the exact solution A( jDx,nD t) ), but
the computed solution An

j would remain the same. In such a case, the error of the solution
usually will not be decreased by refining the grid. We conclude that if the value of c is such
that x0 lies outside of the domain of dependence, it is not possible for the solution of the
finite-difference equation to approach the solution of the differential equation, no matter
how fine the mesh becomes. The finite-difference equation converges to the differential
equation, but the solution of the finite-difference equation does not converge to the solution
of the differential equation. The truncation error goes to zero, but the discretization error
does not. Bummer.

The condition for x0 to lie inside the domain of dependence is

0  µ  1 . (7.7)

101



Wave propagation can also cause numerical instability

For wave propagation, the requirement for stability 
has almost the same form as for advection, i.e.,

,  

where  is the phase speed of the wave.

Sound waves, including the Lamb wave, have 
phase speeds ~ 300 m s-1, much larger than typical 
wind speeds, so the time-step limit tends to be set 
by wave propagation rather than advection.

μ ≡ cΔt/Δx

c



Vertically propagating sound waves are troublesome.

In the Earth’s atmosphere, the speed of sound is in the range 280 - 350 m s-1, depending on temperature.

If vertically propagating sound waves are simulated with explicit time differencing, the time step required 
for computational stability can be as small as one second, because the vertical grid spacing can be on the 
order of 300 m.

Horizontally propagating sound waves are not so bad if the grid cells are much wider than they are tall.

300 m

100 km



Four ways to deal with 
vertically propagating sound waves

Take small time steps (probably too expensive).

Sub-cycle (used in some mesoscale models).

Use partially implicit time-differencing methods 
(keeps sound waves, but slows them down).

Filter the vertically propagating sound waves from 
the continuous equations.

Quasi-static approximation
Anelastic approximation
Unified System

The first three approaches are numerical.

The fourth approach is based on physical approximation.



Colorado topography



Topography

With high resolution, terrain 
slopes become very large.

Terrain-following coordinates do 
not work well under those 
conditions.



I

Arakawa, Akio, Celal S. Konor, 2009: Unification of the Anelastic and Quasi-
Hydrostatic Systems of Equations. Mon. Wea. Rev., 137, 710–726.

Filtering sound waves







Computational modes

Computational modes are solutions of the 
discrete equations that do not correspond 
to any solutions of the continuous 
equations.

In other words, computational modes are 
spurious or bogus “extra” solutions.

Computational modes generally manifest 
as “noise.” 



An example of a computational mode in space
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17.2 Staggered grids for the shallow water equations

Consider the differential-difference equations

du j

dt
+g

✓
h j+1 �h j�1

2d

◆
= 0, (17.9)

dh j

dt
+H

✓
u j+1 �u j�1

2d

◆
= 0, (17.10)

where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (17.3) - (17.4). We keep the time derivatives
continuous here because the issues that we are going discuss next have to do with space
differencing only. Consider a distribution of the dependent variables on the grid as shown
in Fig. 17.1. Notice that from (17.9) and (17.10) the set of red quantities will act com-
pletely independently of the set of black quantities, if there are no boundaries. With cyclic
boundary conditions, this is still true if the number of grid points in the cyclic domain is
even. What this means is that we have two families of waves on the grid: “red” waves
that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.

x
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u
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h
Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are

�
u j,h j

�
⇠ ei(k jd�st), (17.11)
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where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (17.3) - (17.4). We keep the time derivatives
continuous here because the issues that we are going discuss next have to do with space
differencing only. Consider a distribution of the dependent variables on the grid as shown
in Fig. 17.1. Notice that from (17.9) and (17.10) the set of red quantities will act com-
pletely independently of the set of black quantities, if there are no boundaries. With cyclic
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even. What this means is that we have two families of waves on the grid: “red” waves
that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.

Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are
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u j,h j
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⇠ ei(k jd�st), (17.11)
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Here the computational mode comes from (accidental) redundancy.



A staggered grid
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17.2 Staggered grids for the shallow water equations

Consider the differential-difference equations
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where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (17.3) - (17.4). We keep the time derivatives
continuous here because the issues that we are going discuss next have to do with space
differencing only. Consider a distribution of the dependent variables on the grid as shown
in Fig. 17.1. Notice that from (17.9) and (17.10) the set of red quantities will act com-
pletely independently of the set of black quantities, if there are no boundaries. With cyclic
boundary conditions, this is still true if the number of grid points in the cyclic domain is
even. What this means is that we have two families of waves on the grid: “red” waves
that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.
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Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are

�
u j,h j

�
⇠ ei(k jd�st), (17.11)
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If we “erase” the red variables, the computational mode is eliminated, but now  and  are defined 
in different places. This is an example of a “staggered” grid.

The density of  and  variables is cut in half, but we can fix this by cutting the grid spacing in half.

With the smaller grid spacing, we have to take a shorter time step to maintain computational 
stability.

u h

u h
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Various staggered grids in two dimensions



The two best choices are 
C and Z.

These dispersion plots show 
how well (or how badly) wave 
propagation is simulated on 
the various grids.
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12 neighbors,

3 wall neighbors

8 neighbors,

4 wall neighbors

6 neighbors,

6 wall neighbors
A C grid has computational modes on triangles and 
hexagons, but not on squares.

A “C” grid places the normal components of the winds on the walls of 
mass cells.

Generalization



The right answer is “2”.

Grid Triangles Squares Hexagons

A 2 2 2

B 1 2 4

C 3/2 2 3

D 3/2 2 3

E Does not exist 2 3

Z 2 2 2

The number of prognostic degrees of freedom in the horizontal wind field, per mass point, on grids A-E and Z, 
and for triangular, square, and hexagonal meshes. For the Z-grid, the vorticity and divergence carry the 
information about the wind field.



An example of a computational mode in time

Computational modes in time can be avoided by using schemes that involve only 
two time levels. The upstream scheme is an example.

dq
dt

= iωq

qn+1 − qn−1

2Δt
= iωqnLeapfrog scheme
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17.2 Staggered grids for the shallow water equations

Consider the differential-difference equations

du j

dt
+g

✓
h j+1 �h j�1

2d

◆
= 0, (17.9)

dh j

dt
+H

✓
u j+1 �u j�1

2d

◆
= 0, (17.10)

where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (17.3) - (17.4). We keep the time derivatives
continuous here because the issues that we are going discuss next have to do with space
differencing only. Consider a distribution of the dependent variables on the grid as shown
in Fig. 17.1. Notice that from (17.9) and (17.10) the set of red quantities will act com-
pletely independently of the set of black quantities, if there are no boundaries. With cyclic
boundary conditions, this is still true if the number of grid points in the cyclic domain is
even. What this means is that we have two families of waves on the grid: “red” waves
that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.

x

Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are

�
u j,h j

�
⇠ ei(k jd�st), (17.11)
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Vertical staggering
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Figure 23.1: A comparison of the Lorenz and Charney-Phillips staggering methods.

Inspection shows that (23.3) “wants” the potential temperature to be defined at levels in
between the wind levels, as they are on the CP-grid. Suppose that we have N wind levels.
Then with the CP-grid we will have N + 1 potential temperature levels and N potential
vorticities. This is nice. With the L-grid, on the other hand, it can be shown that we
effectively have N +1 potential vorticities. The “extra” degree of freedom in the potential
vorticity is spurious, and allows a spurious “computational baroclinic instability” (Arakawa
and Moorthi, 1988). This is a further drawback of the L-grid.

With the Charney-Phillips staggering, we need continuity equations at the layer edges
that are consistent with and actually implied by the continuity equations at layer centers. It
is possible to construct a set of layer-edge continuity equations that are implied by the layer-
center continuity equations. In other words, given that we time-step the layer-center conti-
nuity equations, the layer-edge continuity equations are satisfied “automatically.” There is
no need to time-step them separately. Further discussion is given by Arakawa and Konor
(1996).

As Lorenz (1960) pointed out, however, the L-grid is convenient for maintaining total
energy conservation, because the kinetic and thermodynamic energies are defined at the
same levels. Today, most models use the L-grid. Exceptions are the UK’s Unified Model
and the Canadian Environmental Multiscale model (Girard et al., 2014), both of which use
the CP-grid.
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Chapter 23

Vertical differencing

23.1 Vertical staggering

After the choice of vertical coordinate system, the next issue is the choice of vertical stag-
gering. Two possibilities are discussed here, and are illustrated in Fig. 23.1. These are the
“Lorenz” or “L” staggering (Lorenz, 1960), and the “Charney-Phillips” or “CP” staggering
(Charney and Phillips, 1953). Suppose that both grids have N wind-levels. The L-grid also
has N q -levels, while the CP-grid has N +1 q -levels. On both grids, f is hydrostatically
determined on the wind-levels, and

fl �fl+1 ⇠ ql+ 1
2
. (23.1)

On the CP-grid, q is located between f -levels, so (23.1) is convenient. With the L-grid, q
must be interpolated. For example, we might choose

fl �fl+1 ⇠
1
2
(ql +ql+1) . (23.2)

Because (23.2) involves averaging, an oscillation in q is not “felt” by f , and so has no
effect on the winds; it is dynamically inert. No such problem occurs with the CP-grid.

There is a second, less obvious problem with the L-grid. The vertically discrete poten-
tial vorticity corresponding to (22.112) is

ql ⌘ (k ·—q ⇥Vl + f )
✓

∂q
∂ p

◆

l
. (23.3)
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Figure 23.1: A comparison of the Lorenz and Charney-Phillips staggering methods.
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This illustrates that averaging can give rise to computational modes.

With the L grid, a zig-zag in  has no effect on the thickness between neighboring wind levels.θ



Conservative schemes

Mass of dry air

Mass of water and other “minor” species

Momentum (or angular momentum)

Thermodynamic energy

Kinetic energy

Total energy

Potential vorticity

Physical laws have the form “X does not change, except…”

Examples of things that obey equations like that:



Chapter 1

Introduction

1.1 What is a model?

The atmospheric science community includes a large and energetic group of researchers
who devise and carry out measurements of the atmosphere. They do instrument develop-
ment, algorithm development, data collection, data reduction, and data analysis.

The data by themselves are just numbers. In order to make physical sense of the data,
some sort of model is needed. It might be a qualitative conceptual model, or it might
be an analytical theory, or it might be a numerical model. Models provide a basis for
understanding data, and also for making predictions about the outcomes of measurements.

Accordingly, a community of modelers is hard at work developing models, perform-
ing simulations, and analyzing the results, in part by comparison with observations. The
models by themselves are just “stories” about the atmosphere. In making up these stories,
however, modelers must strive to satisfy a very special and rather daunting requirement:
The stories must be true, as far as we can tell; in other words, the models must be consis-
tent with all of the relevant measurements.

Most models in atmospheric science are formulated by starting from basic physical
principles, such as conservation of mass, conservation of momentum, and conservation of
thermodynamic energy. Many of these equations are prognostic, which means that they
involve time derivatives. A simple example is the continuity equation, which expresses
conservation of mass:

∂r
∂ t

=�— · (rV). (1.1)

Here t is time, r is the density of dry air, and V is the three-dimensional velocity vector.
Prognostic variables are governed by prognostic equations. Eq. (1.1) is a prognostic equa-

3
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As an example, to an excellent approximation, the mass of dry air does not change as the
atmosphere goes about its business. This physical principle is embodied in the continuity
equation, (1.1). Integrating (1.1) over the whole atmosphere, with appropriate boundary
conditions, we can show that

Z

WA

— · (rV)dx3 = 0, (1.3)

and so (1.1) implies that

d
dt

0

@
Z

WA

rdx3

1

A= 0. (1.4)

In these two equations, “WA” stands for whole atmosphere. Equation (1.4) is a statement of
global mass conservation; in order to obtain (1.4), we had to use (1.3), which is a property
of the divergence operator with suitable boundary conditions.

In a numerical model, we replace (1.1) by an approximate discrete equation; examples
are given later. The approximate form of (1.1) entails a discrete approximation to the
divergence operator. The approximation inevitably involves errors, but because we are able
to choose or design the approximations, we have some control over the nature of the errors.
We cannot eliminate the errors, but we can refuse to accept certain kinds of errors. For
example, in connection with the continuity equation, we can refuse to accept any error in
the conservation of global mass. This means that we can choose to design our model so
that an appropriate analog of (1.4) is satisfied exactly.

In order to derive an analog of (1.4), we have to enforce an analog of (1.3); this means
that we have to choose an approximation to the divergence operator that “behaves like” the
exact divergence operator in the sense that the global integral (or, more precisely, a global
sum approximating the global integral) is exactly zero. This can be done, quite easily. You
will be surprised to learn how often it is not done.

There are many additional examples of important physical principles that can be en-
forced exactly by designing suitable approximations to differential and/or integral opera-
tors, including conservation of energy and conservation of potential vorticity. In practice, it
is only possible to enforce a few such principles exactly. We must choose which principles
to enforce, guided by our understanding of the physics.
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Conservation with the continuous equations



Conservation with finite differences
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—A ⌘ lim
V!0

2

4 1
V

I

S

nAdS

3

5 , (10.2)

This can be used, for example, for formulate an approximation to the pressure-gradient
force. The pressure on each grid-cell wall tries to accelerate the mass in the grid cell in the
direction normal to the wall. If all of the pressures are equal, then they cancel each other
out and there is no net force on the mass in the cell. But when the pressures differ from one
wall to another, there can be a net force. For example, if the pressure on the front of your
car is higher than the pressure on the back, then the car will experience a net “drag” force
that tries to slow it down.

A definition of the curl operator that does not make reference to any coordinate system
is:

—⇥Q ⌘ lim
V!0

2

4 1
V

I

S

n⇥QdS

3

5 (10.3)

This can be used to formulate an approximation to the vorticity in terms of the tangential
wind components on the wall of the volume.

Finally, the Jacobian on a two-dimensional surface can be defined by

J (A,B) = lim
C!0

I

C
A—B · tdl

�
, (10.4)

where t is a unit vector that is tangent to the bounding curve C. This can be used to
formulate an approximation to the Jacobian operator in terms of the grid-point values of
the scalars A and B.

10.2 How is discrete conservation defined?

When we design finite-difference schemes to represent advection, we strive, as always, for
accuracy, stability, simplicity, and computational economy. In addition, it is often required
that a finite-difference scheme for advection be conservative in the sense that

Â
j

rn+1
j dR j = Â

j
rn

j dR j, (10.5)
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and

Â
j
(rA)n+1

j dR j = Â
j
(rA)n

j dR j +Dt Â
j
(rS)n

j dR j. (10.6)

These are finite-difference analogs to the integral forms (6.11) and (6.12), respectively. In
(10.6), we have assumed for simplicity that the effects of the source, S, are evaluated using
forward time differencing, although this need not be the case in general.

We may also wish to require conservation of some function of A, such as A2. This
might correspond, for example, to conservation of kinetic energy. Energy conservation can
be arranged, as we will see.

There are various additional requirements that we might like to impose. Ideally, for
example, the finite-difference advection operator would not alter the PDF of A over the
mass. Unfortunately this cannot be guaranteed with Eulerian methods, although we can
minimize the effects of advection on the PDF, especially if the shape of the PDF is known
a priori. This will be discussed later. In a model based on Lagrangian methods, advection
does not alter the PDF of the advected quantity. That’s very attractive.
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Finite-volume methods

 
∇A ≡ lim

S→0

1
V

nAdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥

 
∇⋅Q ≡ lim

S→0

1
V

n ⋅QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥

 
∇×Q ≡ lim

S→0

1
V

n×QdS
S
!∫

⎡

⎣
⎢

⎤

⎦
⎥

Divergence

Curl

Gradient

d�

Outward 
normal

Control volume

Advection

Vorticity

Pressure  
gradient



Works in any number of dimensions

d�

Outward 
normal

Control volume

3D: Volume and surface
2D: Area and perimeter
1D: Curve and end points



Example

In 2D, we can write  .∇ ⋅ Q =
1
A ∮C

Q ⋅ n ds

x + δx

y + δy

x
y

∇ ⋅ Q ≅
1

δxδy [Qx (x + δx, y +
δy
2 ) δy + Qy (x +

δx
2

, y + δy) δx − Qx (x, y +
δy
2 ) δy − Qy (x +

δx
2

, y) δx]
Simplifying, we find that

∇ ⋅ Q ≅
1
δx [Qx (x + δx, y +

δy
2 ) − Qx (x, y +

δy
2 )] +

1
δy [Qy (x +

δx
2

, y + δy) − Qy (x +
δx
2

, y)]
In the limit, this reduces to the expected result:

∇ ⋅ Q =
∂Qx

∂x
+

∂Qy

∂y



Discrete mass conservation in one dimension
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When the wind field is non-divergent, this reduces to an “advection equation” for the den-
sity:

∂r
∂ t

+u
∂r
∂x

= 0. (11.5)

Note, however, that in general the density is not conserved following a particle, because in
general the wind field is divergent.

11.2 Conserving mass

Suppose that we approximate (11.2) by:

dr j

dt
+

(ru) j+1/2 � (ru) j�1/2

Dx j
= 0, (11.6)

This is an example of a “differential-difference equation” (sometimes called a semi-discrete
equation), because the time-rate-of-change term is in differential form, while the spatial
derivative has been approximated using a finite-difference quotient. We will keep time
derivatives continuous for now because the issues that we are going to discuss are mostly
about space differencing.

The density r is defined at integer points, while u and ru are defined at half-integer
points. See Fig. 11.1. In order to use this approach, the wind-point quantities r j+1/2 and
r j�1/2 must be interpolated somehow from the predicted values of r . This is an example
of a “staggered” grid. The properties of staggered grids, in multiple spatial dimensions, are
discussed in detail in later chapters.

... ...
u
j−1
2

u
j+1
2

u
j+ 3
2

ρ jρ j−1 ρ j+1

Figure 11.1: The staggered grid used in (11.10) and (11.6).

Multiply (11.6) through by Dx j, and sum over the domain, to obtain

d
dt

J

Â
j=0

�
r jDx j

�
+(ru) j+1/2 � (ru)� 1

2
= 0. (11.7)
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Flux from 
  to j j + 1

Flux from 
  to j − 1 j

d
dt

J

∑
j=0

(ρjΔxj) + (ρu)J+1/2
− (ρu)1/2

dρj

dt
+

(ρu)j+1/2
− (ρu)j−1/2

Δxj
= 0



Conserving an intensive scalar: Continuous case

Flux form

Continuity

Advective form

∂
∂t (ρA) +

∂
∂x (ρuA) = 0

∂ρ
∂t

+
∂
∂x (ρu) = 0

Subtract  times continuity from the flux form to obtainA

ρ ( ∂A
∂t

+ u
∂A
∂x ) = 0

Multiply the advective form by  :A

ρ ( ∂
∂t

+ u
∂
∂x ) A2

2
= 0

Use continuity to go back to flux form:

∂
∂t (ρ

A2

2 ) +
∂
∂x (ρu

A2

2 ) = 0 Conservation of A2



Conserving an intensive scalar: Discrete case

Advective form

Continuity

Flux form

ρj
dAj

dt
+

(ρu)j+1/2 (Aj+1/2 − Aj) + (ρu)j−1/2 (Aj − Aj−1/2)
Δxj

= 0

dρj

dt
+

(ρu)j+1/2
− (ρu)j−1/2

Δxj
= 0

d
dt (ρjAj) +

(ρu)j+1/2
Aj+1/2 − (ρu)j−1/2

Aj−1/2

Δxj
= 0

We have to interpolate somehow to get  and   from the prognostic values of .Aj+1/2 Aj−1/2 Aj

Does this result make sense?

Reduces to flux form above if .A ≡ 1

Flux from 
  to j − 1 j

Flux from 
  to j j + 1

Flux from 
  to j j + 1

Flux from 
  to j − 1 j



Can we also conserve the square of  ?Aj

Advective form

Multiply each term by  :Aj

ρj
d
dt (

A2
j

2 ) +
(ρu)j+1/2

Aj (Aj+1/2 − Aj) + (ρu)j−1/2
Aj (Aj − Aj−1/2)

Δxj
= 0

Multiply continuity by  :A2
j /2

(
A2

j

2 )
dρj

dt
+ (

A2
j

2 )
(ρu)j+1/2

− (ρu)j−1/2

Δxj
= 0

ρj
dAj

dt
+

(ρu)j+1/2 (Aj+1/2 − Aj) + (ρu)j−1/2 (Aj − Aj−1/2)
Δxj

= 0

Add the two equations above:

d
dt (ρj

A2
j

2 ) +
(ρu)j+1/2 [Aj (Aj+1/2 − Aj) + A2

j /2] − (ρu)j−1/2 [Aj (Aj−1/2 − Aj) + A2
j /2]

Δxj
= 0



Finishing up

Repeated from previous slide

Simplify:

Is this really a flux form? Yes, if the flux into  is equal to the flux out of :j + 1 j

We can solve for the unknown in this equation, which is .   The result is  .Aj+1/2 Aj+1/2 = (Aj + Aj+1)/2

d
dt (ρj

A2
j

2 ) +
(ρu)j+1/2 [Aj (Aj+1/2 − Aj) + A2

j /2] − (ρu)j−1/2 [Aj (Aj−1/2 − Aj) + A2
j /2]

Δxj
= 0

d
dt (ρj

A2
j

2 ) +
(ρu)j+1/2 [Aj (Aj+1/2 − Aj /2)] − (ρu)j−1/2 [Aj (Aj−1/2 − Aj /2)]

Δxj
= 0

(ρu)j+1/2 [Aj (Aj+1/2 − Aj /2)] = (ρu)j+1/2 [Aj+1 (Aj+1/2 − Aj+1/2)]

Conclusion:   Conservation of  is consistent with conservation of   if we choose  .Aj A2
j /2 Aj+1/2 = (Aj + Aj+1)/2



The equations tell us what to do.

“We have to interpolate somehow to get  and   from the prognostic values of .”Aj+1/2 Aj−1/2 Aj

Earlier I said that:

The requirement that   must be conserved has told us how to choose  .A2
j /2 Aj+1/2

This choice is “accurate” if the grid is uniform.



Dynamics

Boundary Layer

Macrophysics

Microphysics Shallow Convection

Deep Convection

Radiation

Aerosols

Surface Fluxes

The finite-volume approach is a natural way 
to  include parameterizations.



The spectral method for 1-D advection
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A problem at the end of this chapter invites you to prove that the al
j are real numbers.

The point of this exercise is that (26.17) can be interpreted as a member of the family of
finite-difference approximations discussed many times in this course, starting with (3.23).
The scheme given by (26.17) is somewhat special in that it involves all grid points in the
domain. From this point of view, spectral models can be regarded as a class of finite-
difference models.

26.6 Solving linear equations with the spectral method

Now consider the one-dimensional advection equation with a constant current, c:

∂q
∂ t

=�c
∂q
∂x

. (26.19)

Substituting (26.6) and (26.8) into (26.19) gives

n

Â
k=�n

dq̂k

dt
eikx =�c

n

Â
k=�n

ikq̂keikx. (26.20)

By linear independence, we obtain

dq̂k

dt
=�ikcq̂k for �n  k  n. (26.21)

Note that dq̂0
dt will be equal to zero; the interpretation of this should be clear. We can use

(26.21) to predict q̂k (t). When we need to know q
�
x j, t

�
, we can get it from (26.6).

Compare (26.21) with

dq̂k

dt
=�ikc


sin(kDx)

kDx

�
q̂k, (26.22)

which, as discussed in earlier chapters, is obtained by using centered second-order space
differencing. The spectral method gives the exact advection speed for each Fourier mode,
while the finite-difference method gives a slower value, especially for high wave num-
bers. Similarly, spectral methods give the exact phase speeds for linear waves propagating
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Recall that the proof of (26.1) and (26.2) involves use of the orthogonality condition

1
L

x+L/2Z

x�L/2

e�ikx0eilx0dx0 = dk,l, (26.3)

where

dk, l ⌘

8
<

:
1, k = l

0, k 6= l
(26.4)

is the Kronecker delta. Eqs. (26.1) and (26.2) are a “transform pair.” They can be used to
go back and forth between physical space and wave-number space.

26.3 Differentiation

From (26.1), we see that the x-derivative of q satisfies

∂q
∂x

(x, t) =
•

Â
k=�•

ikq̂k (t)eikx. (26.5)

Inspection of (26.5) shows that ∂q/∂x does not receive a contribution from q̂0; the reason
for this should be clear.

26.4 Truncation

A spectral model uses equations similar to (26.1), (26.2), and (26.5), but with a finite set of
wave numbers, and with x defined on a finite mesh:

q
�
x j, t

�⇠=
n

Â
k=�n

q̂k (t)eikx j , (26.6)

q̂k (t) =
1
M

M

Â
j=1

q
�
x j, t

�
e�ikx j ,�n  k  n, (26.7)
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∂q
∂x

�
x j, t

�⇠=
n

Â
k=�n

ikq̂k (t)eikx j . (26.8)

The sums in (26.6) and (26.8) are truncated, in that they do not include wave numbers
outside the range ±n. The value of n is chosen by the modeler. The sum that appears in
(26.7) is over a grid with M points. Note that we have used “approximately equal signs” in
(26.6) and (26.8), but not in (26.7). Why?

A key point is that for each wave number the derivative in (26.8) is exact. The approx-
imation in (26.8) comes from the truncation.

There should be some relationship between M and n, because M measures the amount
of information available on the grid, and n measures the amount of information available
in the spectral coefficients. Apart from the effects of round-off error, the transform (26.6)
is exactly reversible by the inverse transform (26.7), provided that M is large enough, i.e.,
provided that there are enough points on the grid.

So how many points do we need? To see the answer, substitute (26.6) into (26.7) to
obtain

q̂k (t) =
1
M

M

Â
j=1

("
n

Â
l=�n

q̂l (t)eilx j

#
e�ikx j

)
for �n  k  n. (26.9)

This is, of course, a rather circular substitution, but the result serves to clarify some basic
ideas. If expanded, each term on the right-hand side of (26.9) involves the product of two
wave numbers, l and k, each of which lies in the range �n to n. The range for wave number
l is explicitly spelled out in the inner sum on the right-hand side of (26.9); the range for
wave number k is understood because, as indicated, we will evaluate the left-hand side
of (26.9) for k in the range �n to n. Because each term on the right-hand side of (26.9)
involves the product of two Fourier modes with wave numbers in the range �n to n, each
term includes wave numbers up to ±2n. We therefore need 2n+ 1 complex coefficients,
i.e., 2n+ 1 values of the bqk (t). In general, this is the equivalent of 4n+ 2 real numbers,
which suggests that we need M � 4n+ 2 in order to represent the real-valued function
q
�
x j, t

�
on a grid.

The required value of M is actually much smaller, however, for the following reason.
Because q is assumed to be real, it turns out that
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A problem at the end of this chapter invites you to prove that the al
j are real numbers.

The point of this exercise is that (26.17) can be interpreted as a member of the family of
finite-difference approximations discussed many times in this course, starting with (3.23).
The scheme given by (26.17) is somewhat special in that it involves all grid points in the
domain. From this point of view, spectral models can be regarded as a class of finite-
difference models.

26.6 Solving linear equations with the spectral method

Now consider the one-dimensional advection equation with a constant current, c:

∂q
∂ t

=�c
∂q
∂x

. (26.19)

Substituting (26.6) and (26.8) into (26.19) gives

n

Â
k=�n

dq̂k

dt
eikx =�c

n

Â
k=�n

ikq̂keikx. (26.20)

By linear independence, we obtain

dq̂k

dt
=�ikcq̂k for �n  k  n. (26.21)

Note that dq̂0
dt will be equal to zero; the interpretation of this should be clear. We can use

(26.21) to predict q̂k (t). When we need to know q
�
x j, t

�
, we can get it from (26.6).

Compare (26.21) with

dq̂k

dt
=�ikc


sin(kDx)

kDx

�
q̂k, (26.22)

which, as discussed in earlier chapters, is obtained by using centered second-order space
differencing. The spectral method gives the exact advection speed for each Fourier mode,
while the finite-difference method gives a slower value, especially for high wave num-
bers. Similarly, spectral methods give the exact phase speeds for linear waves propagating
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A problem at the end of this chapter invites you to prove that the al
j are real numbers.

The point of this exercise is that (26.17) can be interpreted as a member of the family of
finite-difference approximations discussed many times in this course, starting with (3.23).
The scheme given by (26.17) is somewhat special in that it involves all grid points in the
domain. From this point of view, spectral models can be regarded as a class of finite-
difference models.

26.6 Solving linear equations with the spectral method

Now consider the one-dimensional advection equation with a constant current, c:
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(26.21) to predict q̂k (t). When we need to know q
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, we can get it from (26.6).

Compare (26.21) with

dq̂k

dt
=�ikc


sin(kDx)

kDx

�
q̂k, (26.22)

which, as discussed in earlier chapters, is obtained by using centered second-order space
differencing. The spectral method gives the exact advection speed for each Fourier mode,
while the finite-difference method gives a slower value, especially for high wave num-
bers. Similarly, spectral methods give the exact phase speeds for linear waves propagating
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Figure C.1: Algebraic forms and plots of selected associated Legendre functions.

By using the orthogonality condition (C.18) for the associated Legendre functions, and
also the orthogonality properties of the trigonometric functions, we can show that
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Substitution can be used to demonstrate that, when (C.17) is satisfied, the associated Leg-
endre functions are indeed solutions of (C.15).

In view of the leading factor of
�
1�µ2�m/2 in (C.16), the complete function Pm

n (µ) is
a polynomial in µ for even values of m, but not for odd values of m. The functions Pm

n (µ)
are said to be of “order n” and “rank m.” Figure A7.1 gives some examples of associated
Legendre functions, which you might want to check for their consistency with (C.16). It
can be shown that the associated Legendre functions are mutually orthogonal, i.e.,

1Z

�1

Pm
n (µ) ·Pm

l (µ) dµ = 0, for n 6= l and

1Z

�1

[Pm
n (µ)]2 dµ =

✓
2

2n+1

◆
(n+m)!
(n�m)!

.

(C.18)

It follows that the functions

s✓
2n+1

2

◆
(n�m)!
(n+m)!

Pm
n (µ) ,n = m,m+1,m+2, . . . , (C.19)

are mutually orthonormal for �1  µ  1.

Referring back to (C.6), we see that a particular spherical surface harmonic can be
written as

Y m
n (µ,l ) = Pm

n (µ)exp(iml ) , (C.20)

It is the product of an associated Legendre function of mu with a trigonometric function of
longitude. Note that the arbitrary constant has been set to unity.

Fig. C.2 shows examples of spherical harmonics of low order, as mapped out onto the
longitude-latitude plane. Fig. C.3 gives similar diagrams for and = 0, 1, 2,...,5, plotted out
onto stretched spheres. Fig. C.4 shows some low-order spherical harmonics mapped onto
three-dimensional pseudo-spheres, in which the local radius of the surface of the pseudo-
sphere is one plus a constant times the local value of the spherical harmonic.
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Spherical harmonics have this form.
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Figure C.3: Alternating patterns of positives and negatives for spherical harmonics with n = 5 and
m = 0,1,2, . . . ,5. From Baer (1972).

bPm
n (µ)⌘

s

2
(n�m)!
(n+m)!

Pm
n (µ) . (C.23)

The mean value over the sphere of the square of bPm
n (µ) is then 1/(2n+1), for any values

of n and m.

The spherical harmonics can be shown to form a complete orthonormal basis, and so
can be used to represent an arbitrary function, F (l ,j) of latitude and longitude:

F (l ,j) =
•

Â
m=�•

•

Â
n=|m|

T m
n Y m

n (l ,j) . (C.24)

Here the T m
n are the expansion coefficients. Note that the sum over m ranges over both

positive and negative values, and that the sum over n is taken so that n�kmk � 0.

The sums in (C.24) range over an infinity of terms, but in practice, of course, we have
to truncate after a finite number of terms, so that (C.24) is replaced by
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Discretizing the sphere with spherical harmonics



Spherical 
harmonics



The Gibbs Phenomenon

As the resolution increases, the RMS error goes to zero, but finite errors persist locally, 
near discontinuities, no matter how many basis functions are used.



Sign preservation and monotonicity

Sign-preserving: No negative water.

Monotone: No excursions outside the initial range.

Monotone schemes are always sign-preserving, 
but sign-preserving schemes are not necessarily 
monotone.

Schemes that are sign-preserving or monotone 
tend to damp. 

The upstream scheme is a good example.
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3 8 3  U N  I H h  I ' K U D L b M  U P  

so that the solution for the arbitrary initial 
field 

T k ( 0 )  = a k  

is 
k - k - v  

t ' l  00 

= c-=x a k - 4  7' 
4 - 0  4 

As before, it can be shown that the total 
vorticity is conserved, and that the speed of 
propagation is approximately correct, since 
e - w / q !  has a maximum for z ' 4 .  

For the single initial maximum of vorticity 
(7 b) this becomes 

22 1 . ._ k + I  k ( k + r )  
(k + I ) !  t 

As might have been expected with the use of 
a backward difference, the solution is mono- 
tonic in x, thus eliminating the "parasitic 
waves". On this basis, Obukhov finds it 
superior to the solution (8). However, it is 
equally important to note that for large z the 

asymptotic value is ___ This is < t - I I 2  

where k = z, in contrast to z-''3 of the cen- 
tered-difference solution. As a comparison we 
may compute the maximum value of the two 
solutions. For a wind speed U = 20 m/sec and 
a grid distance h = 300 hi, the value z = 6 
corresponds to 9.0 x 104 seconds, or a little 
more than one day. At the end of this time 
we have (from Poisson distribution tables) 

[(k(6)]max - 0.48  (backward difference) 

3e-rtk + I 

(k + I ) !  ' 

and (from tables of Bessel functions) 
[Ck(6)]max - 0.86 (centered difference) 

Instead of conserving and advecting the vor- 
ticity maximum strictly with the velocity U, 
the centered difference approximation has 
dispersed a small ortion of it into the spurious 

mation has diffused away $2 per cent, both u - 
waves, but the I! ackward-difference approxi- 

and down-stream. The exact solutions P or 
Tellur XI11 (1961) 3 

I K U N L A l l U N  b K K U K  

"t f i  

Fig. I .  Three solutions of the advection equation for 
(non-dimensional) times T = 5. 10, 1 5 .  

_ _ _ _  solution ( 8 )  of centered differential-difference 
equation 

solution ( I  I )  of backward differential-differ- 

For typical meteorological values, ten units of non- 

(exact) solution of continuous equation (4) 

ence equation 

dimensional time correspond to about 42 hours. 

three different times, t = 5 (about 21 hours), 
z = 10, and t = 1s are represented in Figure 
I .  Curves have been sketched through the 
discrete points as an aid to perspicuity. 

A glance suffices to show that neither 
finite-difference solution is a satisfactory 
ap roximation to the continuous solution. In 
0 g ukhov's example, the effect of the diffusion 
on reducing the maximum vorticity was not 
apparent, so that the choice between the 
differencing schemes seemed easier. Perhaps a 
more extended comparison is indicated, using 
more realistic wave-patterns. 

The most frequently integrated equation of 
meteorology, the barotropic vorticity equation, 
expresses a conservation law, the final output 
being not the vorticity but the height of the 
pressure surface. The height is a twice-inte- 
grated function of the vorticity field, and as 
such may be expected to be a much smoother 
field. 

This smoothing is particularly effective in 
eliminating the spurious oscillations contained 
in the solution (8). To see this it is convenient 
to take an initial vorticity pattern representing 

Figure 12.8: The solution of (12.20) with “box” initial conditions. From Wurtele (1961).

Dispersion is evident again in Fig. 12.8. The dashed curve is for centered space differenc-
ing, and the solid curve is for the upstream scheme. (The solution for the upstream case is
given in terms of the Poisson distribution rather than Bessel functions; see Wurtele’s paper
for details.) The principal disturbance moves to the right, but the short-wave components
move to the left.

Do not confuse computational dispersion with instability. Both dispersion and insta-
bility can lead to “noise,” but a noisy solution is not necessarily unstable. In the case
of dispersion, the waves are not growing in amplitude; instead, they separating from one
another (“dispersing”), each moving at its own speed.
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17.2 Staggered grids for the shallow water equations

Consider the differential-difference equations

du j

dt
+g

✓
h j+1 �h j�1

2d

◆
= 0, (17.9)

dh j

dt
+H

✓
u j+1 �u j�1

2d

◆
= 0, (17.10)

where d is the grid spacing. which are, of course, differential-difference analogs of the
one-dimensional shallow water equations, (17.3) - (17.4). We keep the time derivatives
continuous here because the issues that we are going discuss next have to do with space
differencing only. Consider a distribution of the dependent variables on the grid as shown
in Fig. 17.1. Notice that from (17.9) and (17.10) the set of red quantities will act com-
pletely independently of the set of black quantities, if there are no boundaries. With cyclic
boundary conditions, this is still true if the number of grid points in the cyclic domain is
even. What this means is that we have two families of waves on the grid: “red” waves
that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
problem.

x

Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are

�
u j,h j

�
⇠ ei(k jd�st), (17.11)
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diffusion. Haertel and colleagues later allowed the sacks to change their volumes, which
made it possible to construct a global atmosphere model (Haertel and Straub, 2010; Haertel
et al., 2014, 2015, 2017). The global atmosphere and ocean models have now been coupled,
and used to simulate climate change (P. Haertel, personnal communication, 2019). This
fully Lagrangian global modeling system is truly unique, and it will be interesting to see
how it evolves from here.

13.2 Semi-Lagrangian schemes

13.2.1 The basic idea

“Semi-Lagrangian” schemes (e.g., Robert et al., 1985; Staniforth and Côté, 1991; Bates
et al., 1993; Smith, 2000; Diamantakis, 2013) are of interest in part because they allow very
long time steps, and also because they can easily maintain such properties as monotonicity.

The basic idea is very simple. At time step n+ 1, values of the advected field, at the
various grid points, are considered to be characteristic of the particles that reside at those
points. We ask where those particles were at time step n. This question can be answered
by using the (known) velocity field, averaged over the time interval (n,n+1), to track the
particles backward in time from their locations at the various specified grid points, at time
level n+ 1, to their “departure points” at time level n. Naturally, the departure points are
usually located in between grid cells. The values of the advected field at the departure
points, at time level n, can be determined by spatial interpolation. If advection is the only
process occurring, then the values of the advected field at the departure points at time level
n will be identical to those at the grid points at time level n+1.

As a simple example, consider one-dimensional advection of a variable q by a constant
current, c. A particle that resides at x = x j at time level t = tn+1 has a departure point given
by

(xd)
n
j = x j � cDt. (13.8)

Here the superscript n is used to indicate that the departure point is the location of the
particle at time level n. Suppose that c > 0, and that the departure point is less than one Dx
away from x j, so that

x j�1 < (xd)
n
j < x j. (13.9)

Then the simplest linear interpolation for A at the departure point is
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(Ad)
n
j = µ̂An

j�a +(1� µ̂)An
j�a+1. (13.15)

where

µ̂ ⌘ 1�a+µ. (13.16)

Notice that we have assumed again here, for simplicity, that both the mesh and the advect-
ing current are spatially uniform. It should be clear that

0 < µ̂ < 1. (13.17)

For a = 1, µ = µ̂ . Eq. (13.11) gives

An+1
j = µ̂An

j�a +(1� µ̂)An
j�a+1 . (13.18)

This has the form of an interpolation, so we still have computational stability and mono-
tonicity (and sign-preservation); the semi-Lagrangian scheme is computationally stable
regardless of the size of the time step. This means that the only limit on the time step is that
it has to be short enough to temporally resolve what we are trying to simulate.

It is clear that the semi-Lagrangian scheme outlined above is very diffusive, because
it is more or less equivalent to a “generalized upstream scheme.” By using higher-order
interpolations (e.g., cubic interpolations), the strength of this computational diffusion can
be reduced, but it cannot be eliminated completely.

13.2.2 More accurate semi-Lagrangian schemes

We now consider more accurate semi-Lagrangian schemes, still in one spatial dimension.
The issues to be addressed are:

• How to find the departure point when the wind varies in space and time;

• How to interpolate the advected field to the departure point;

• How to account for sources and sinks that act along the particle’s path from the
departure point.

184

In the sketch,  .  For ,   and we get the upstream scheme.a = 5 a = 1 ̂μ = μ

The scheme is an interpolation, so it is stable and sign-preserving, regardless of . Δt

̂μ ≡ 1 + (μ − a)
Note that  “by construction”.0 ≤ ̂μ ≤ 1



What’s not to like?

Semi-Lagrangian schemes are unconditionally stable and sign-preserving.
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that propagate both left and right, and “black” waves that propagate both left and right.
Physically there should only be one family of waves.

A good way to think about this situation is that we have two non-interacting models
living on the same grid: a red model and a black model. That’s a problem. The red model
may think it’s winter, while the black model thinks it’s summer. In such a case we will have
tremendous noise at the grid scale.

The two models are noninteracting so long as they are linear. If we include nonlinear
terms, then interactions can occur, but that doesn’t mean that the nonlinear terms solve the
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Figure 17.1: A-grid for solution of the one-dimensional shallow water equations.

Here is a mathematical way to draw the same conclusion. The wave solutions of (17.9)
and (17.10) are
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It is possible to make them conservative, e.g., by remapping.



Remapping: 
A conservative type of semi-Lagrangian scheme

Remapping on a Rectangular Grid

Mass in the shaded region at time is remapped into
the central grid cell at time . The transported
fields are approximated as polynomial functions of
and in each grid cell and integrated over the depar-
ture region.

This is intrinsically a B-grid scheme (scalars at cell
centers, velocity at  corners).

n
n 1+

x
y

Remapping on a Geodesic Grid

The scheme works as follows:
(1) Construct mass and tracer fields in each grid cell.
(2) Locate departure triangles for each cell face.
(3) Integrate fluxes over departure triangles.
(4) Transfer fluxes across cell faces.

This idea was proposed by Dukowicz and Baumgardner (2000).
It’s conservative because it just slides the mass around.

It’s complicated but very attractive.
(It’s even more complicated in 3D.)

Find the departure points.



Regional refinement

Nesting Stretching



The same physics can be used with different dynamical cores.

Spectral Eulerian

FV1

SE

MPAS

FV3

Example:   The dynamical cores currently available for use with the CAM are:



Discretizing the equations: 
What do we want?

Good accuracy, or more precisely rapid convergence

Computational stability — no blowing up 

No computational modes

Conservation of various things

Sign preservation and monotonicity

The possibility of regional refinement

Simplicity

Speed
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