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Dynamical Cores

If you want to learn (a lot) more
about dynamical cores, take AT604,
“Atmospheric Modeling,” which will
be offered in Fall semester 2025.



Where does the computer time go?

90%

Physics

Dynamics

90%




What is the job of a dynamical core?

@ Predict the distribution of mass

@ Predict the horizontal wind vector

® Determine the vertical motion

@ Predict the adiabatic tendency of the temperature

® Advect moisture and other scalars




Choices in the desigh of a dynamical core

Choice of scope, including the smallest scale to be
represented and the highest model top allowed

Choice of equation set
Choice of prognostic variables
Choice of vertical coordinate system

Choice of a method to discretize the sphere

Choice of a method to discretize the equations



The “exact” equations

Dp
Dt

FpV -V =0

DV
Dt

F2OQXV4+QXQXr+ Ve, +aVp=—aV-F

C el wa =—aV - (R+FS)+LC+5

" Dt Dynamics

Dq,
Dt

=—aV-qu—C



Choice of equation set:
What approximations should be used?

e Quasi-static approximation

* Various anelastic approximations

* Thin atmosphere approximation

* Neglect of some Coriolis terms

* Neglect of the centrifugal acceleration

e Spherical Earth approximation

* Uniform gravity approximation

We are gradually eliminating these approximations.

The quasi-static approximation has been the most useful, and will be the first to go.



The quasi-static approximation is not the
same as the hydrostatic approximation.

| . Approximate the equation of vertical motion by

9P _

3z —P§

Neglect of the vertical acceleration in the equation of vertical motion is almost
always justified.

2. Determine the pressure by vertical integration of the hydrostatic equation,
and use that pressure to determine the pressure-gradient term of the horizontal

equation of motion.

This is justified when the vertical velocity is weak and the weather system is
much wider than it is tall.

It is not justified for vigorous and deep small-scale weather systems.



What happens when the
quasi-static approximation is used?

1. The equation of vertical motion can no longer be used to determine the vertical velocity.
It has to be determined somehow, though.

2. The number of prognostic thermodynamic variables decreases from two to one.

3. Vertically propagating sound waves are filtered.

dp
07

=—pg



The trend to non-hydrostatic models

Faster, massively parallel computers are
allowing us to use finer grids.

Finer grids can resolve weather systemes,
e.g., thunderstorms, that are not quasi-
static.

For this reason, we are now building
GCMs that do not use the quasi-static
approximation.

These new high-resolution GCMs can
borrow ideas from the well established
mesoscale modeling community.




Allow a thick atmosphere?

The combined thickness of the
troposphere and stratosphere is less
than |% of the radius of the Earth.
In that sense, the Earth’s
atmosphere is “thin.”

1 O0H, | I
= I H i
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1 0H, 1 0 oH
= : H Ruaid
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Other atmospheres are not so thin.




Include oblateness?

The picture on the right is distorted.
In reality, the Equatorial radius is “only” about 20 km larger than the polar radius.



Include nonuniform gravity?

_ l—
= |

-60 -40 =20 0 20 40 60

Gravity Anomaly (mGal)

The gal (symbol Gal), sometimes called galileo, is a unit of acceleration used extensively in the science of gravimetry, and defined
as 1 centimeter per second squared (1 cm s-2). The mean value of g is about 1000 gals. Gravity also weakens with height, of course.


https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Gravimetry
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Categories of model data

Prognostic variables (internal)
Initial conditions (external)

Diagnostic variables (internal)

Boundary conditions (external)

How prognostic variables work:

Temperature Temperature (Warming - Cooling )

atend oftimestep ~  at beginning of time step

Prognostic variables are “remembered” by the model, from one time step to the next.
Diagnostic variables are not remembered. They have to be recomputed from scratch on every time step.



Choice of prognostic variables
(What to time-step!?)

°*  Winds
> Zonal, meridional, and vertical components
> Angular momentum instead of the zonal component

> Vertical component of the vorticity, and divergence of
the horizontal wind vector

>~ Horizontal vorticity vector

* Thermodynamic energy
>~ Temperature
> Potential temperature
> Entropy
~ Moist entropy

* Moisture
>~ Water vapor mixing ratio
> Total water mixing ratio
~ Condensed water species

All choices give the same result in the continuous system, but not in the discrete system.



Discretizing the sphere

A field (e.g., temperature) that is defined on a
continuous spherical surface has infinitely many
degrees of freedom.

In a model, only a finite number of “discrete”
degrees of freedom can be kepit.




Discretizing the sphere with grids
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Tri-polar ocean grid
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The Platonic Solids

These are the only regular polyhedrons.



N =

N M
3 6
4 4
5 10/3
6 3
7 14/5
o0 2

Tiling the plane

Suppose that a regular convex polygon has N sides. The interior angles, a, must sum to 2,
SO

Na = 2r.

Next, suppose that M polygons come together at each vertex. The exterior angles, [, must
sum to 27, so

Mp =2r.

Since the interior angles of a triangle must sum to z, we can write

a+2<£>=ﬂ,
2

or
a+p=n.
Combining these three equations, we find that
2N
M = .
N-—-2

Trying different values of NV, we find that M is an integer only for N = 3, 4, or 6.

Conclusion: Triangles, squares, and hexagons are the only convex regular polygons that tile
the plane.



Other ways to tile the plane
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Tiling the Plane

|2 neighbors 8 neighbors 6 neighbors
3 wall neighbors 4 wall neighbors 6 wall neighbors
Triangles Squares Hexagons

nest. nest. don’t nest.



All places the same.
All directions the same.
All neighbors the same.

|2 neighbors 8 neighbors 6 neighbors
3 wall neighbors 4 wall neighbors 6 wall neighbors



Geodesic Grids

lcosahedron Bisect each edge Pop out onto
and connect the dots the unit sphere

And so on, until we reach our target resolution...
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All cells are nearly the same size
(within about 5% in terms of area).

The grid is quasi-isotropic.

CEL for advection is not an issue.



No. of grid Avg eorid
Grid points N distance ¢ (km)

GO 12 6699.1
Gl 42 3709.8
G2 162 1908.8
G3 642 961.4
G4 2562 481.6
G5 10242 240.9
G6 40 962 120.4
G7 163842 60.2
G3 655 362 30.1
G9Y 2621442 15.0
G10 10485762 7.33
Gl11 41 943 042 3.76
G12 167772162 1.88

G13 671088 642 0.94




Discretizing the sphere with spherical harmonics

The spectral method will be discussed later.



Choice of vertical coordinate system

(Stairways to heaven)

Any vertical coordinate must be monotonic with height.

Coordinate Strengths Weaknesses
Intersects topography;
Height Most intuititive Complicated equation for vertical velocity
if quasi-static approximation 1s used
. Simple con.t inuity eqqatlon; . Intersects topography
Pressure Simple computation of vertical velocity L .
. . . in different places on different days
Pressure-gradient force 1s a gradient;
. Foll the 1 boundary; . .
Sigma OIOWS TAT JOWeT DOURAALY Issue with the pressure-gradient force

Constant at the top and bottom of the model

Hybrid sigma-pressure

Follows the lower boundary;
Constant at the top and bottom of the model

Smaller 1ssue with the pressure-gradient force

Theta

Minimizes vertical advection;
Pressure-gradient force 1s a gradient;
Convenient for computing PV

Not strictly monotonic with height;
Low vertical resolution in mixed layers;
Intersects topography
in different places on different days

Hybrid sigma-theta

Follows the lower boundary;
Behaves like theta away from the lower boundary;
Can work even when theta 1s not monotonic with height

Complicated equation for vertical velocity
if quasi-static approximation 1s used




Sigma coordinates




Example of a finite-difference scheme:
The “upstream scheme™ for advection of a scalar

(8A> +C(8A> 3 4
ar ). \ox),~ a8 /Af“

A,
n+1 n n n
AT AL AL //
At | Ax — . . o
(L
This is for written ¢ > 0. For ¢ < 0O S
we would use j and j + 1. /

X—ct=x, . - - ’ .
A’”H‘1 —An(l— )‘|‘An /° . . o . -~ p X
g T H j—1H j

Here u = c¢ At/ Ax. The shaded area is the domain of dependence forAJ?”‘“.



Computational instability

Computational instability is the unbounded growth of discretization errors.
Instablility leads to noise, but a noisy scheme is not necessarily unstable.

There are multiple types of numerical instabllity, just as there are multiple
types of physical instability.

® “Linear” instability can sometimes be avoided by using a sufficiently
small time step.

® “Nonlinear” instability can occur even with continuous time
derivatives.

Instability usually occurs on the smallest scales represented in a model.

Unstable schemes can often be identified by a pencil-and-paper analysis,
before a single line of code is written.



Is the upstream scheme stable?

A?H =AT(1—pu)+A 1 where it = cAt/ Ax

For O < u < 1, the scheme interpolates, so that
A]?““ falls in between A]?”’ and A ].”_ ;- Blow-up is

therefore impossible, but damping can smooth out
the solution excessively.

For u < O or u > 1, the scheme extrapolates, so
that A]?”l“ lies outside the range of Ajf”’ and A ]?”‘_ -

With more and more time steps, the solution will
run away.

Conclusion: The scheme is stable for O < y < 1, and unstable for y < O or u > 1.



Circling back

An—|—1

For O < u < 1, the solution lies within the domain of dependence.

The scheme is stable when the solution lies within the domain of dependence.



Wave propagation can also cause numerical instability

For wave propagation, the requirement for stability
has almost the same form as for advection, i.e.,

u = cAt/ Ax,
where c is the phase speed of the wave.

Sound waves, including the Lamb wave, have
phase speeds ~ 300 m s-!, much larger than typical
wind speeds, so the time-step limit tends to be set
by wave propagation rather than advection.




Vertically propagating sound waves are troublesome.

In the Earth’s atmosphere, the speed of sound is in the range 280 - 350 m s-!, depending on temperature.

If vertically propagating sound waves are simulated with explicit time differencing, the time step required

for computational stability can be as small as one second, because the vertical grid spacing can be on the
order of 300 m.

Horizontally propagating sound waves are not so bad if the grid cells are much wider than they are tall.

300 m
|00 km



Four ways to deal with
vertically propagating sound waves

® Take small time steps (probably too expensive).

® Sub-cycle (used in some mesoscale models).

® Use partially implicit time-differencing methods
(keeps sound waves, but slows them down).

® Filter the vertically propagating sound waves from
the continuous equations.

A Quasi-static approximation
A Anelastic approximation
A Unified System

The first three approaches are numerical.

The fourth approach is based on physical approximation.



Colorado topography

SURFACE ELEVATION SURFACE ELEVATION

km km
430 km resolution 120 km resclution

SURFACE ELEVATION SURFACE ELEVATION

4 km resolution 2 km resolution




Topography

® With high resolution, terrain
slopes become very large.

® Terrain-following coordinates do
not work well under those
conditions.




Filtering sound waves

There are two ways to filter sound waves.

Quasi-hydrostatic system :

D 1 dp
%X+ =g
t poz

Vertical momentum equation
becomes diagnostic.

To satisfy this for all t, vertical velocity
must be passive to other variables.

\

4 A

Anelastic system :

/aa%W-(pV)

Continuity equation
becomes diagnostic.

0

To satisfy this for all t, pressure gradient force

must be passive to other forces.

;

For cloud-resolving models,

\. J

filtering must be this type.



WHAT IS THE MINIMUM REQUIREMENT
FOR FILTERING VERTICALLY PROPAGATING SOUND WAVES?

Pgs - “quasi-hydrostatic density” that satisfies apqs/ 0z = Py L

op : “non-hydrostatic density” defined by dp =p—p,;

Since vertically propagating sound waves are non-hydrostatic,

it is sufficient to drop only the 00p / dt term for filtering those waves.



DISPERSION RELATION FOR PERTURBATIONS
ON A RESTING ISOTHERMAL ATMOSPHERE ON A f-PLANE
(WITHOUT QUASI-GEOSTROPHIC APPROXIMATION)

(a) Compressible Non-Nydrostaic

1
1077
(b) Quasi-Hydrostatic T N (c) Anelastic Non-Hydrostatic
1 - g | 1
>
103 |
101} 101
104
102} | | | | | f 102}
108 107 10% 10> 104 103 1072
10-3 k (m_1) 10-3 ~N Q
i | i % /8
(d) Unified R
1 - - - :
10 104
108 107 10% 10> 104 103 102

108 107 10©® 105 104 103 1032
k (m™1)

k (m™)

The real problem of the anelastic system
is distortion of vertical structure,
not in this dispersion relation.

108 107 10©® 10> 104 103 102
k (m™1)



Computational modes

Computational modes are solutions of the
discrete equations that do not correspond
to any solutions of the continuous
equations.

In other words, computational modes are
spurious or bogus “extra” solutions.

Computational modes generally manifest
as “noise.”




An example of a computational mode in space

Here the computational mode comes from (accidental) redundancy.



A staggered grid

If we “erase” the red variables, the computational mode is eliminated, but now u and / are defined
in different places. This is an example of a “staggered” grid.

The density of u and /4 variables is cut in half, but we can fix this by cutting the grid spacing in half.

With the smaller grid spacing, we have to take a shorter time step to maintain computational
stability.



Various staggered grids in two dimensions

uv

u,v

u,v

u,v

u,v

uy

u,v

u,v u,v
h
u,v u,v
h
u,v u,v
h
u,v u,v
B grid
u,v
U, v h u v
h u,Vv h
U,V h U,V
h U v h
v h uv
uv

E grid

u,v

u,v

u,v

u,v

u,v

uv

u,v

£,0

£,0

£,0

Z grid

£,0

£,0

£,0
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Generalization

A “C” grid places the normal components of the winds on the walls of
mass cells.

A C grid has computational modes on triangles and
hexagons, but not on squares.



The right answer is “27,

Grid Triangles Squares Hexagons

A 2
1
3/2
3/2

Does not exist

2

N m| O O ™
N N N N NN
D | W | W W N N

The number of prognostic degrees of freedom in the horizontal wind field, per mass point, on grids A-E and Z,
and for triangular, square, and hexagonal meshes. For the Z-grid, the vorticity and divergence carry the
information about the wind field.



An example of a computational mode in time

Im

d

Oscillation equation 7? = iwq R
qn+1 _ qn—l

Leapfrog scheme = iwqg"

P1rog AT q

Two Initial conditions ° ® ® ® ® ® >

needed 1 0

Solution for @ = () ° ® ° ° ° °
| 0 1 0 1 0

Computational modes in time can be avoided by using schemes that involve only
two time levels. The upstream scheme is an example.



Vertical staggering

Charney-Phillips Grid Lorenz Grid
! !
v, LLLLLLLLLLLLLLLLLLLLL )y = Vo MLl L L Ll LLLLLL L2 L ()20
| AsEErmsmnesmes -y [ SFcsscs—wasses -y 8
1% w 8 %> w
gi T V g St Y 6
-l e y -l m— e VR
. I/z w f-l/z w
 r~oomsssoseses —y ] memsmemene A
l+'/2 w 8 1*'/2 w
BE] e s e e ke e - 4’ ] ———————————— —_ 4/ [
I — Y Ll mm e — Y8
L-72 w 68 L-'/g w
b e % L e V8
L2 rrrrrrrrrrrr 7 W30 R —————
O — Pri1~ 6, 1)) ~1(9+9 )

With the L grid, a zig-zag in € has no effect on the thickness between neighboring wind levels.

This illustrates that averaging can give rise to computational modes.



Conservative schemes

’

Physical laws have the form “X does not change, except...’

Examples of things that obey equations like that:

@® Mass of dry air

® Mass of water and other “minor” species
® Momentum (or angular momentum)

® Thermodynamic energy

@® Kinetic energy

® Total energy

® Potential vorticity



Conservation with the continuous equations

Jp
ot

=—V-(pV)

/ V. (pV)d =0
WA

d 31 _
WA



Conservation with finite differences

Zp7+1de = Zp;ldR]
J J

Y (pA) ™ dR; = Y (pAY}dR;+ At Y (pS)}dR,
J

J J



Finite-volume methods

1 )
Divergence V-Q=Ilim —Cﬁn -QdS Advection
S—0| V g
Outward
) ) normal
] N
Curl V X Q=Ilim —Cﬁn X QdS Vorticity
S—0| V g

Control volume

. |
Gradient Va=tim| o gnads| G
S

S—0




Works in any humber of dimensions

Outward
normal

3D: Volume and surface
2D: Area and perimeter
1D: Curve and end points

Control volume



1
In 2D, we can write V - Q :chg Q -nds. €
C

V-Qx

OX

o

X+ 0x,y+—

Example

f y + 0y
-
yx * X+ ox

Simplifying, we find that

In the limit, this reduces to the expected result:

V-Q

_ 00, 90,

ox

dy

_ 5y OX 5y
O, x+5x,y+7 oy + 0, x+7,y+5y ox — Q. x,y+7 oy — Q, x+7,y

OX

)u




Discrete mass conservation in one dimension

dp; | ('0 )j+1/2_ ('0 >j—1/2 _ 0
Flux from Flux from
j—1toj jtoj+1
q q
—@— @ @ B -@ ——
-1 u]_l Pi U 1 P U,
2 ™3 ™3



Conserving an intensive scalar: Continuous case

0 0
dp 0 B
or tax () =0

Subtract A times continuity from the flux form to obtain

( 0A 0A
0 u—1,1=0
ot 0x

Multiply the advective form by A :

Flux form

Continuity

Advective form

Conservation of A?



Conserving an intensive scalar: Discrete case

Flux from Flux from
jtoj+1 j—1toj

Flux form
=0

) | (pu)j+1/2Aj+1/2 o <pu)j—1/2Aj_1/2

Ax:

d(A
dt J J :

We have to interpolate somehow to get A;, |, and A;_;, from the prognostic values of A,.

Flux from Flux from
jtoj+1 j—1toj
dp; (pu)'m_(pu)'—lz
. T 12 _ Continuity
dt AX;

/ Reduces to flux form above if A = 1.

dAj | (Pu)j+1/2 (Aj+1/2 _Aj> + <pu)j—1/2 (Aj _Aj—1/2>

p] dt | AX]

-0 Advective form

_

Does this result make sense?



Can we also conserve the square of A;?

A —A.) (A.—A._ )
as, ”)j+1/2( i = A) + () (A= A 0 Advective form

i dr Ax:

Multiply each term by A; :

d <Aj2) (’Ou>j+1/2 A; (Aj+1/2 _Aj> T (,01/!)],_1/2 4 (Aj B j—1/2>

Fiar\ 2

Multiply continuity by Aj2/2 ;

Add the two equations above:

2 2
; ( A.Z) (pu)j+1/2 A (A].+1/2—Aj>+Aj /2 —(pu)j_l/z [Aj (Aj_l,z—Aj>+Aj /2]

a J
dt

Pj7



Finishing up

2 2

d [ A7
- p]_ | - — = O

Repeated from previous slide

Simplify:

|
-

] ( Ajz) (P4) 1 [Aj (Aj+1,2—Aj/2> ~ (o), |4 <Aj_1/2—Aj/2)

E i 7 ij

s this really a flux form? Yes, if the flux into j 4+ 1 is equal to the flux out of ;:

(’Ou)j+1/2 [Aj <Aj+1/2 _Aj/2> = (P“)j+1/2 Ay (Aj+1/2 _Aj+1/2>
We can solve for the unknown in this equation, which is A;, ;. The resultis A, |, = <Aj +Aj+1>/2 .

Conclusion: Conservation of A; is consistent with conservation of A].2/2 if we choose A/, = (Aj +Aj+1>/2 .



The equations tell us what to do.

Earlier | said that:

“WVe have to interpolate somehow to get A;,;, and A;_;,, from the prognostic values of A.”

The requirement that A].2/2 must be conserved has told us how to choose A, |, .

This choice is “accurate” if the grid is uniform.



The finite-volume approach is a natural way
to include parameterizations.

Dynamics \

/ Surface Fluxes
Radiation \

Boundary Layer
Aerosols

MlcrophySICS Av Shallow Convection
Macrophysic Deep Convection

\/




The spectral method for | -D advection

Py
% = —ikcgip tfor —n<k<n



Discretizing the sphere with spherical harmonics

204

150

R (u)=1
m __ pm -
Y, (1, A) =P (1) exp (imA) R
Spherical harmonics have this form.
P ()= u
m=0 m=|
B (p)=1-p*
L LS LT
H
\\\\\\ ANV W I’ /I /T// //////// ’

Py (p)=3u\1-p

Figure C.3: Alternating patterns of positives and negatives for spherical harmonics with » =5 and ;
m=0,1,2,...,5. From Baer (1972). T

Figure C.1: Algebraic forms and plots of selected associated Legendre functions.
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The Gibbs Phenomenon

—— ) Ia—

— O m—

As the resolution increases, the RMS error goes to zero, but finite errors persist locally,
near discontinuities, no matter how many basis functions are used.



Sign-preserving: No negative water.

Monotone: No excursions outside the initial range.

Monotone schemes are always sign-preserving,
but sign-preserving schemes are not necessarily
monotone.

Schemes that are sign-preserving or monotone
tend to damp.

The upstream scheme is a good example.

Sigh preservation and monotonicity

1.0'¢ =5 '.TI
/
k ] ‘\
050 : \
0 NPV N )
45 -0 M8/ 9/ 5 10 15 20 25
1.,’ .i‘.._.).
1.01§ 7=10 A
k 1 I
I
05t 1: ‘\
\\
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15 20
107
fﬁ\\
05 f’ \\
1 ! [ —
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Mo T N0 N8y 1 15 200 25
" ‘U

Fig. 1. Three solutions of the advection equation for
(non-dimensional) times T = §, 10, IS.
mmssmsesmsmess (cxact) solution of continuous equation (4)
solution (8) of centered differential-difference

equation
solution (11) of backward differential-differ-

ence equation
For typical meteorological values, ten units of non-
dimensional time correspond to about 42 hours.



Semi-Lagrangian Advection

And you may ask yourself, “Well, how did | get here?”

/\

@ —@ ® @ @ @ >

X
n
(%) j ¥
Find the departure point (xd)'} = Xx; — CAt

1 A A
A’}Jr — HA’}—a +(1-1) ?—a—l—l
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Note that O < i < 1 “by construction”.

The scheme is an interpolation, so it is stable and sign-preserving, regardless of Af.

In the sketch, a = 5. For a = 1, /i = u and we get the upstream scheme.



What’s not to like?

@ o—@ ® ® ® ® y X
(xd);l A

Semi-Lagrangian schemes are unconditionally stable and sign-preserving.

It is possible to make them conservative, e.g., by remapping.



Remapping:

A conservative type of semi-Lagrangian scheme

Find the departure points.
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This idea was proposed by Dukowicz and Baumgardner (2000).
It’'s conservative because it just slides the mass around.
It’'s complicated but very attractive.
(It's even more complicated in 3D.)



Regional refinement

A
o ﬂu' FLNARAS
AR S WA NS
S S A
VAT s SR RS
TN LA g
”’.,/afl.rllfll' "
OV VAR S FE A O
0N VL ISR AR AAR ST .
\ _// z,,l/ﬂﬂ ﬂl)/ﬂﬂi[; - Y
///iz;t’lnlr! -2

NS
XN

l "
. . ”l" N
- fluﬂfalll —

: s 3
, N N l.)’.r/l”

Stretching

Nesting



The same physics can be used with different dynamical cores.

Example: The dynamical cores currently available for use with the CAM are:

® Spectral Eulerian
@® FVI

® SE

@® MPAS

® FV3



Discretizing the equations:
What do we want?

® Good accuracy, or more precisely rapid convergence
® Computational stability — no blowing up

® No computational modes

® Conservation of various things

® Sign preservation and monotonicity

® The possibility of regional refinement

® Simplicity

® Speed



Dynamics



