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What is to be parameterized?

The most difficult issues come 
from the effects of small-scale 
dynamics, including turbulence 
and convection.  

This is true even for radiation 
and microphysics.

Small-scale dynamics  is closely 
tied to clouds.
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Definition of the 
Atmospheric Boundary Layer

The atmospheric boundary layer (ABL), also known as the planetary boundary 
layer (PBL), is the portion of the lower atmosphere that is directly influenced by 
turbulent exchanges with the surface.

https://en.wikipedia.org/wiki/Atmosphere


Turbulence and vorticity



Turbulence





Turbulence in deep convective clouds



Synoptic-scale turbulence



Turbulence in the Jovian atmosphere



Turbulence is made of vortices.



Vortices almost seem to be alive.

They are identifiable “discrete 
objects” in an otherwise 
smooth fluid.

They persist.

They move.

They dance with each other.



Vortices can advect things.



Vortices can advect each other.







Topology

Vortex line Vortex ring



Topology

Vortex line Vortex ring



......

Infinite vortex sheet (balanced)

......

......

Perturb one vortex...

Instability...

Big vortices make little vortices.



Big whirls have little whirls 
That feed on their velocity. 
Little whirls have lesser whirls 
And so on to viscosity.

— Lewis Richardson



Turbulence is chaotic.



Turbulence is chaotic.





Turbulence mixes.

The spinning motor makes a vortex.
The vortex makes baby vortices.
The vortices make turbulence.

The turbulence mixes.



Turbulence is hard.

According to an apocryphal story, Werner 
Heisenberg was asked what he would ask 
God, given the opportunity. His reply was: 
“When I meet God, I am going to ask him two 
questions: Why relativity? And why turbulence? 
I really believe he will have an answer for the 
first.”

A similar witticism has been attributed to 
Horace Lamb in a speech to the British 
Association for the Advancement of Science:  
“I am an old man now, and when I die and go 
to heaven there are two matters on which I 
hope for enlightenment. One is quantum 
electrodynamics, and the other is the 
turbulent motion of fluids.  And about the 
former I am rather optimistic.”

https://en.wikipedia.org/wiki/Turbulence

Heisenberg Lamb

https://en.wikipedia.org/wiki/Turbulence


Vorticity across scales

Large-scale motions are 
controlled by the vertical 
component of the vorticity.

Small-scale motions are 
controlled by the 
horizontal vorticity vector.



Some basic questions 
for boundary layer parameterization

What determines the surface fluxes?

What sets the depth of the boundary layer?

What happens when clouds form inside the 
boundary layer?

How does the boundary layer interact with 
cumulus convection?



Five approaches to boundary layer parameterization

Similarity theories

Eddy diffusion

Mixed-layer models

Higher-order closure

Mass fluxes

We will discuss all of these, one by one.



Reynolds Averaging

It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the turbulent boundary layer. For this reason, we ``filter'' or 
“average’" or “smooth’" the data, and attempt to describe only the resulting statistics of the flow. Here we follow the approach of ``Reynolds Averaging,'' which 
takes its name from Osborne Reynolds, the famous aerodynamicist who invented it in the late 19th century. 

Suppose that 

where  is time and  is a source of . The quantity inside the divergence operator is a flux of  due to an advecting mass flux .

We now decompose each of the dependent variables as follows:

,    ,     .

This is called the “`Reynolds decomposition.” Here an overbar denotes an averaging operator that must be defined defined. Substitution gives

  .

Here we have neglected additional terms that arise from variations of the density of the air. We want to choose the averaging operator in such a way that the 
average of this equation reduces to

  .

Here the flux divergence term has two parts. The first involves the product of two averages, and the second involves the average of the product of two primes. 
The quantity  is the flux due to the product of two fluctuations. It can be called the “turbulent flux of ,” assuming that the fluctuations are associated with 
turbulence. Note, however, that fluctuations can also arise from other things, such as waves.

∂
∂t (ρq) + ∇ ⋅ (ρVq) = Sq

t Sq q q ρV

q = q + q′ V = V + V′ Sq = Sq + S′ q

∂
∂t [ρ (q + q′ )] + ∇ ⋅ [ρ (q + q′ ) (V + V′ )] = Sq + S′ q

∂
∂t (ρq) + ∇ ⋅ [ρ (q V + q′ V′ )] = Sq

q′ V′ q



Surface fluxes

These are called “bulk aerodynamic formulas.”

ρw′ T′ = ρcT v
S (Tg − Ta)

ρw′ q′ = ρcq v
S (qg − qa)

ρw′ v′ = − ρcD v
S

v



Monin-Obukhov similarity theory
(MOST)
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where tS is the turbulent shear stress vector, and the subscript S denotes a surface value.
Similarly, the surface “buoyancy flux,”

`
w1q 1

v
˘

S, is represented through the “friction tem-
perature,” which is defined by

ku˚q˚ ” ´
`
w1q 1

v
˘

S , (13.3)

where k – 0.4 is called the “von Karman constant,” and is introduced here by convention
(as is the minus sign). The list (13.1) could be extended by including moisture variables,
but we postpone discussion of this complication. Because of the minus sign in (13.3), q˚ is
negative when

`
w1q 1

v
˘

S is positive.

Businger et al. (1971) argued that the value of the von Karman constant is 0.35, but
later work Högström (1985) showed that the correct value is closer to 0.4, as stated above.

The 1950s

Joanne Simpson

Andrei Monin and Alexander ObukhovFigure 13.1: Andrei Sergeevich Monin and Alexander Mikhailovich Obukhov. Photos from Foken
(2006).

We now summarize the famous Monin-Obukhov similarity theory, which is sometimes
abbreviated as MOST. Virtually all numerical models use MOST in some way.

Monin and Obukhov (1954) hypothesized that, sufficiently near the surface, the sta-
tistical structure of the PBL turbulence is, to a good approximation, determined by the
following seven parameters, which are a subset of (13.1):

z ,
g

qv0
,u˚ ,q˚ ,z0 ,u ,qv . (13.4)

Since a length, a time, and a temperature are needed to express the dimensions of these
seven dimensional parameters, the Buckingham Pi theorem tells us that only four indepen-
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Andrei Sergeevich Monin and Alexander Mikhailovich Obukhov

MOST is used in all (not just most) Earth System Models.



Dimensional parameters
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Monin and Obukhov (1954) hypothesized that, sufficiently near the surface, the statistical structure of the PBL turbulence is, to a good 
approximation, determined by the following seven parameters

Chapter 13

The surface layer

13.1 What is the “surface layer”?

By definition, the turbulent fluxes are “close” to their surface values throughout the surface
layer. Here “close” could mean within 10%. The surface layer is sometimes called the
“constant flux layer,” even though the fluxes may actually change more rapidly with height
in the surface layer than elsewhere in the boundary layer.

13.2 Surface-layer similarity

The list of dimensional parameters to be considered in an analysis of the surface fluxes is
discouragingly long. Here is a list of possibilities, which could easily be extended:

z ,zB ,
g

qv0
,u˚ ,q˚ , f ,

Bug

Bz
,
Bvg

Bz
,z0 ,u ,v ,qv . (13.1)

Here zB is the PBL depth, qv is the virtual potential temperature, f is the Coriolis parameter,
u, is the component of the horizontal wind in the direction of the surface wind, v is the
component in the direction normal to the surface wind, and ug and vg are the corresponding
geostrophic wind components. The vertical derivatives of ug and vg are included in (13.1)
to represent the possible effects of baroclinicity on PBL structure. The roughness length,
z0, will be defined later in this section. It is included in (13.1) to represent the particular
nature of the lower boundary. The surface stress is represented in (13.1) through u˚, the
surface “friction velocity,” which is defined by

u˚ ”
c

tS

rS
• 0 , (13.2)
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dent dimensionless combinations can be formed. They can be chosen as u{u˚ ,qv{q˚ ,z{z0,
and

z ” z
L

, (13.5)

where L is the “Monin-Obukhov length,” defined by

L ” ´ u3˚
g

`
w1q 1

v
˘

S {qv0
. (13.6)

Note that L and z are negative when the surface buoyancy flux is upward, and positive
when it is downward. A physical interpretation of L is given below.

Monin and Obukhov further hypothesized that the vertical derivatives of u and qv are
independent of z{z0. It follows that

Bu
Bz

“ u˚
kz

fm pz q . (13.7)

and

Bqv

Bz
“ q˚

z
fh pz q . (13.8)

where fm and fh are the non-dimensional vertical derivatives of u and qv, respectively.
The (hopefully) universal functions fm and fh have to be determined empirically, but since
they are universal they only have to be measured once. The forms of fm and fh should
be the same whether they are measured on Earth or on Mars. Once fm and fh have been
determined, the wind and temperature profiles in the surface layer can be determined by
vertical integration of (13.7) and (13.8).

We define the von Karman constant, k , by setting

fm p0q “ 1 . (13.9)
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Here the “friction velocity” is given by

A key parameter is the Monin-Obukhov length, which is defined by

and the “friction temperature,” ,  satisfiesθ*



Similarity assumptions
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Nondimensional shear

Nondimensional stratification

Here  is the virtual potential temperature, , and the von Karman constant, , is defined 
so that . 

The boundary layer is said to be “unstable” for   (upward surface flux of ), “stable” for 
 (downward surface flux of ), and “neutral” for  (no surface flux of ).

For the neutral boundary layer, integration gives 

where  is the “roughness length.” This is the definition of .

θv ζ ≡ z /L κ
ϕm (0) = 1

ζ < 0 θv
ζ > 0 θv ζ = 0 θv

u (z) =
u*

κ
ln

z
z0

z0 z0
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Observed similarity functions
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Monin-Obukhov similarity hypothesis works well. The greatest residual scatter occurs for
the heat flux in the stable PBL. Later work by Högström (1985) shows that the correct
numerical value of the constant b in (13.14) is actually 4.0 rather than 4.7. By combining
(13.14) with (13.7) and (13.8), we can obtain the vertical profiles of and .

Finally, it was found that

lim
z Ñ8

Ri f “ 0.21 , (13.15)

i.e., in the very stable PBL (or near the top of the stable PBL), the flux Richardson number
approaches a critical value of 0.21, which is close to the critical value of 0.25 found in the
linear theory of Kelvin-Helmholtz instability, which will be discussed later.
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Fig. 3: The observed forms of �  and � , from Businger et al. (1971).

C. Applications

As mentioned earlier, once the forms of at !  and !  have been determined it is 
possible to integrate (7) and (8) to obtain the wind and temperature profiles in the surface layer. 
The resulting formulae can be used to “work the problem backwards,” by computing the surface 
values of the momentum and heat fluxes from the wind and temperature profiles. In effect, the 
similarity theory is used to determine the forms of the transfer coefficients for momentum and 
sensible heat. Examples are shown in Fig. 4.  

Fig. 4: Surface friction velocity and surface heat flux as inferred from the wind and temperature profiles 
(vertical axes), and comparison with the observed values (horizontal axes). From Businger et al. (1971).

A very widely used version of this idea was developed by Louis (1979), for use in the 
ECMWF model. He defines a “bulk Richardson number,” 

�h ⇥( ) �m ⇥( )

ϕm (ζ ) ϕh (ζ )

Copyright 2018 David A. Randall

Figure 13.3: The observed forms of fm pz q and fh pz q, from Businger et al. (1971).

13.4 Applications of MOST

As mentioned earlier, once the forms of fm pz q and fh pz q have been determined it is possi-
ble to integrate (13.7) and (13.8) to obtain the wind and temperature profiles in the surface
layer. The resulting formulae can be used to “work the problem backwards,” by computing
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Notice that RiB depends only on the profiles of the mean wind and temperature, which
are predicted in a model. Louis used Monin-Obukhov similarity to show that RiB should
depend on z and z{z0. He then used the similarity formulae of Businger et al. (1971) to
numerically compute the transfer coefficients as functions of RiB and z{z0. In effect, he
used RiB as a proxy for z . This helps because although z depends on the unknown fluxes
(through u˚ and q˚), RiB depends only on the profiles of the mean wind and temperature,
which are presumed known in a model. The forms of the transfer coefficients proposed by
Louis (1979) are shown in Fig. 13.5.
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compute the transfer coefficients as functions of !  and ! . In effect, he uses !  as a proxy 

for ! . This is very useful because !  depends on the unknown fluxes (through !  and ! ), 
while !  depends only on the profiles of the mean wind and temperature. The forms of the 
transfer coefficients proposed by Louis (1979) are shown in Fig. 5.  

Fig. 5: The transfer coefficients for momentum and sensible heat (vertical axes), as inferred plotted as 
functions of the bulk Richardson number (horizontal axes) and � . From Louis (1979).

D. Limitations

From the studies reviewed so far, one can reasonably conclude that the Monin-Obukhov 
similarity laws work quite well- better, in fact, than could reasonably be expected. We now turn 
to some studies that reveal the limitations of the theory.  

In the limiting case of no mean wind, we expect !  to become independent of ! . This is 

called the “free convection” limit. From (7) and (6), we find that this implies that ! . It 

follows that ! , so that !  becomes uniform for large ! . This is in qualitative agreement 

with observations, which show that !  is well mixed in the interior of the unstable PBL. 

Quantitatively, however, the agreement is not good; it is found that !  in the free 

convection limit. In addition, For !  (free convection), it was found (Fig. 6) that ! ,  

z
z0

RiB RiB

ζ ζ u* θ*
RiB

z / z0

∂θv
∂z

u*

ϕh ~ζ
−1/3

 

∂θv
∂z
∼ z−4/3 θv z

θv
∂θv
∂z

~ z−3/2

ζ →∞  ϕh ∼ ζ
−1/2
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VERTICAL EDDY FLUXES IN THE ATMOSPHERE 
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Fig. la. Drag coefficient for momentum, in terms of the bulk Richardson number and the roughness 
length. Computed by iterations: -, using analytical formulae: - - - - - -. 
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Fig. lb. Same as Figure la, but for heat. 

One might think that the treatment of the stable case should be simpler than the 
unstable one since, again using Businger’s functions, (10) can be solved analytically 
for L. The solution is slightly complicated, but can be approximated very closely by a 
simple quadratic function up to the point where F vanishes, at a critical value of the 
bulk Richardson number of 0.21. Such a function was, in fact, used in our first 
experiments. 
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unstable one since, again using Businger’s functions, (10) can be solved analytically 
for L. The solution is slightly complicated, but can be approximated very closely by a 
simple quadratic function up to the point where F vanishes, at a critical value of the 
bulk Richardson number of 0.21. Such a function was, in fact, used in our first 
experiments. 

Transfer coefficient for momentum Transfer coefficient for sensible heat

Figure 13.5: The transfer coefficients for momentum and sensible heat (vertical axes), as inferred
plotted as functions of the bulk Richardson number (horizontal axes) and z{z0. From Louis (1979).

13.5 Limitations of MOST

From the studies reviewed so far, one can reasonably conclude that the MOST works quite
well – perhaps surprisingly well. We now turn to some studies that reveal the limitations of
the theory.

In the limiting case of no mean wind, we expect Bqv{Bz to become independent of u˚.
This is called the “free convection” limit. Referring back to (13.7) and (13.6), we find that
this implies that fh „ z 1{3. It follows that Bqv{Bz „ z´4{3, so that qv becomes uniform
for large z. This is in qualitative agreement with observations, which show that qv is well
mixed in the interior of the unstable PBL. Quantitatively, however, the agreement is not
good; it is found that Bqv{Bz „ z´3{2 in the free convection limit. In addition, For z Ñ 8
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the surface values of the momentum and heat fluxes from the wind and temperature profiles.
In effect, the similarity theory is used to determine the forms of the transfer coefficients for
momentum and sensible heat. Examples are shown in Fig. 13.4. A major complication is
that z depends on the unknown fluxes through u˚ and q˚.
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Notice that !  depends only on the profiles of the mean wind and temperature, which are 
predicted in a model. Louis used Monin-Obukhov similarity to show that !  should depend on 

!  and ! . The stability dependence enters through ! , and the roughness dependence enters 

through ! . He then uses the similarity formulae of Businger et al. (1971) to numerically 

RiB ≡
g
θ
z
θ z( )−θ z0( )

u
2
z( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

RiB
RiB

ζ z
z0

ζ

z
z0
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z
z0

Unstable Heat flux unstable

Stable Heat flux stable

Figure 13.4: Surface friction velocity and surface heat flux as inferred from the wind and temperature
profiles (vertical axes), and comparison with the observed values (horizontal axes). From Businger
et al. (1971).

A very widely used solution to this problem was developed by Louis (1979), for use in
the forecast model of the European Centre for Medium Range Weather Forecasts (ECMWF).
Louis defined a “bulk Richardson number,”

RiB ” g
qv

z
„

qv pzq ´ qv pz0q
u2 pzq

⇢
. (13.16)
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MOST is really only expected to work over flat surfaces 
in the presence of a mean horizontal wind.

Something better is needed. Looking for a project? 



Climatology of the surface fluxes of 
sensible heat, latent heat,  

and momentum











N m-2 = Pa

DJF mean wind stress from ERS1 and 2



Five approaches to boundary layer parameterization

Similarity theories

Eddy diffusion

Mixed-layer models

Higher-order closure

Mass fluxes



Eddy diffusion

ρw′ h′ = − ρK
∂h
∂z

The diffusion coefficient  has dimensions of length squared 
divided by time.
For , the flux is “down the gradient.”
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Five approaches to boundary layer parameterization

Similarity theories

Eddy diffusion

Mixed-layer models

Higher-order closure

Mass fluxes



Mixed layers



What can be mixed?

Conservative quantities don’t change as the particles 
they are associated move around.

Only conservative quantities can be mixed.
Potential temperature
Specific humidity

Non-conservative quantities cannot be mixed.
Ordinary temperature
Relative humidity



One way to make a mixed layer

z



One way to make a mixed layer
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One way to make a mixed layer

z

A layer has been mixed.



One way to make a mixed layer

z
The gradient has been “expelled.”

A layer has been mixed.



Fluxes are linear with height in a mixed layer.

∂h
∂t

= −
1
ρ

∂
∂z

ρw′ h′ 

ρw′ h′ 

z

0

h(z)

Fluxes are zero above the boundary layer top

ρw′ h′ = [(−EΔh + ΔR) z
D

+ ρcT|VS|(hg − ha) (1 −
z
D )]



What keeps the mixed layer mixed?

ρw′ h′ 

z

0

h(z)

Fluxes are zero above the boundary layer top

Model layer edges

What keeps the mixed layer mixed?



What keeps the mixed layer mixed?

z

0

h(z)

ρw′ h′ = [(−EΔh) z
D

+ ρcT|VS|(hg − ha) (1 −
z
D )] − K

∂h
∂z

K = K0
z
D (1 −

z
D )

OCEANIC VERTICAL MIXING: A REVIEW AND A MODEL 
WITH A NONLOCAL BOUNDARY LAYER 

PARAMETERIZATION 

W. G. Large 
J. C. McWilliams 
S. C. Doney 
National Center for Atmospheric Research 
Boulder, Colorado 

Abstract. If model parameterizations of unresolved 
physics, such as the variety of upper ocean mixing 
processes, are to hold over the large range of time and 
space scales of importance to climate, they must be 
strongly physically based. Observations, theories, and 
models of oceanic vertical mixing are surveyed. Two 
distinct regimes are identified: ocean mixing in the 
boundary layer near the surface under a variety of 
surface forcing conditions (stabilizing, destabilizing, 
and wind driven), and mixing in the ocean interior due 
to internal waves, shear instability, and double diffu- 
sion (arising from the different molecular diffusion 
rates of heat and salt). Mixing schemes commonly 
applied to the upper ocean are shown not to contain 
some potentially important boundary layer physics. 
Therefore a new parameterization of oceanic bound- 
ary layer mixing is developed to accommodate some of 
this physics. It includes a scheme for determining the 
boundary layer depth h, where the turbulent contribu- 
tion to the vertical shear of a bulk Richardson number 
is parameterized. Expressions for diffusivity and non- 
local transport throughout the boundary layer are 
given. The diffusivity is formulated to agree with sim- 
ilarity theory of turbulence in the surface layer and is 
subject to the conditions that both it and its vertical 
gradient match the interior values at h. This nonlocal 
"K profile parameterization" (KPP) is then verified 
and compared to alternatives, including its atmo- 
spheric counterparts. Its most important feature is 

shown to be the capability of the boundary layer to 
penetrate well into a stable thermocline in both con- 
vective and wind-driven situations. The diffusivities of 
the aforementioned three interior mixing processes are 
modeled as constants, functions of a gradient Richard- 
son number (a measure of the relative importance of 
stratification to destabilizing shear), and functions of 
the double-diffusion density ratio, R v. Oceanic simu- 
lations of convective penetration, wind deepening, and 
diurnal cycling are used to determine appropriate val- 
ues for various model parameters as weak functions of 
vertical resolution. Annual cycle simulations at ocean 
weather station Papa for 1961 and 1969-1974 are used 
to test the complete suite of parameterizations. Model 
and observed temperatures at all depths are shown to 
agree very well into September, after which system- 
atic advective cooling in the ocean produces expected 
differences. It is argued that this cooling and a steady 
salt advection into the model are needed to balance the 
net annual surface heating and freshwater input. With 
these advections, good multiyear simulations of tem- 
perature and salinity can be achieved. These results 
and KPP simulations of the diurnal cycle at the Long- 
Term Upper Ocean Study (LOTUS) site are compared 
with the results of other models. It is demonstrated 
that the KPP model exchanges properties between the 
mixed layer and thermocline in a manner consistent 
with observations, and at least as well or better than 
alternatives. 

1. INTRODUCTION 

A major challenge in the creation of Earth system 
models is the development of improved submodels of 
all its components, including the ocean. Recent expe- 
riences with coupled atmosphere-ocean models dem- 
onstrate that extensive and pervasive difficulties arise 
because of a mismatch in the equilibrium surface heat 
flux of each model individually. To avoid the resulting 
climate drift, flux corrections are often applied [Sau- 

sen et al., 1988]. A demanding, but physically more 
attractive alternative is model improvement. A critical 
requirement for an ocean submodel is that it simulate 
the annual cycle of sea surface temperature (SST) 
globally, since SST is the most important ocean prop- 
erty governing the exchange of energy between the 
ocean and atmosphere. The SST represents a balance 
among many processes, including air-sea exchange, 
oceanic transport, and vertical mixing. The latter must 
be parameterized because the processes involve small 
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What keeps the mixed layer mixed?

“ K profile parameterization,” or KPP

z = D

z = 0



Mixed layers can deepen with time.



The diurnal cycle over land



“Stable” & “unstable”  boundary layers



Obsevations of the PBL depth

McGrath-Spangler, E. L., and A. S. Denning, 2013

Mean PBL depth retrieved by the CALIPSO satellite gridded to 1.25 1.25 . Data are from June 2006 to December 2011 
between local noon and 3 pm for conditions without optically thick clouds.

DJF MAM

Additionally, the storm tracks off the east coasts of
North America and Asia in winter produce regions of
cold air traveling over warm water, creating instability.
This leads to greater PBL depths that are visible in the
DJF plot.
[25] The seasonal cycle of PBL depth detected by the

CALIPSO satellite is apparent over India. During boreal
winter when India is coldest, the retrieved depths are
shallowest. In the months before the Asian monsoon (MAM
in this plot), the temperatures are warmest and this is evident
in the deepest retrieved depths. During the monsoon (JJA in
this plot), the LIDAR cannot see through the deep convection
and this biases the retrieval. The average depths therefore
do not include any days with heavy precipitation and so the
retrieved depths are relatively deep. In boreal fall, the
temperature cools and the depths become shallower.
[26] Figure 4 shows the seasonal change in PBL depth. It

is determined by subtracting the DJF mean PBL depth from
the JJA mean PBL depth in Figure 3. Warmer colors indicate
that the retrieved depth is deeper in boreal summer, while
cooler colors indicate the depths are deeper in boreal winter.
This map shows the differences in climate of various
weather patterns such as storms, monsoons, subsidence,
and temperature between the two seasons and their impact
on PBL depth.
[27] The strong seasonal cycle in mixing depth over the

deserts is striking, especially in the sub-tropics. The largest
seasonal contrasts occur over the Sahara, Kalahari, Greater
Australian, and Gobi deserts with seasonal changes well
over a kilometer in some regions. In contrast, there is
little variation over the tropics. The extratropical land
generally shows deeper mixing during the summertime,
and there is a distinct differentiation between the northern
and southern hemispheres.

[28] CALIPSO-estimated PBL depths along the United
States west coast are deeper during boreal winter than during
the summer. This is consistent with the results of Seidel et al.
[2010] who showed that the PBL depths over Oakland, CA
were over 1000m in winter and about 500m during the
summer. They argued that this was because of the
subsidence inversions associated with the Pacific high-
pressure system in the summer. In eastern China, the
summer monsoon and its associated increase in deep
convection limit the retrieval rate and will introduce a bias

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1850 2000 2250 2500 2750

Figure 3. Mean PBL depth retrieved by the CALIPSO satellite gridded to 1.25! " 1.25!. Data are from
June 2006 to December 2011 between local noon and 3 P.M. for conditions without optically thick clouds.

-1800 -1400 -1000 -600 -200 200 600 1000 1400 1800

Figure 4. Seasonal changes in retrieved PBL depth found
by subtracting DJF depths from JJA depths gridded to 1.25!

1.25!. Data are from June 2006 to December 2011 between
local noon and 3 P.M. for conditions without optically
thick clouds.
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PBL mass budget
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PBL mass budget
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updraft
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downdraft
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How entrainment works

Rayment and Readings 1974

Entrainment is the active annexation of quiet fluid by turbulence.

Entrainment is not the same as mixing.



Kelvin-Helmhotz instability



Entrainment across 
the boundary layer top



Fluxes due to entrainment

ρw′ h′ = − EΔh

ρw′ q′ t = − EΔqt

E =
ρe3/2

M

ghΔTv/T0

Stronger turbulence leads to faster entrainment.
A stronger inversion leads to slower entrainment.



Embedding mixed layer models in GCMs

Suarez, M.J., Arakawa, A. and Randall, D.A., 1983. The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Monthly Weather Review, 111(11), pp.2224-2243.



When clouds form inside the boundary layer
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ON THE STRUCTURE OF THE TRADE-WIND MOIST LAYER
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FIGURE i. Schematic vertical cross section along the path of the trade winds. Typical wind speeds at the
various levels are indicated by arrows at the right. The moist layer deepens by about 1,000 feet in 500 miles
horizontal distance; clouds are thus drawn much larger than to actual scale.

FIGURE 2. Typical aerial photograph of a trade cumulus group over the ocean near Puerto Rico, showing small
cloudlets, larger towers with pronounced backslant (wind blows from left) and thin stratus sheet formed by
cumulus spreading just below inversion base.
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Subcloud and cloud layers

Joanne (Starr Malkus) Simpson
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Subcloud and cloud layers



Marine stratocumulus clouds



Mix of stratus and cumulus



Mix of stratus and cumulus



Off the California coast



Near cloud top



Cumulus under stratus



Coastal California



Wimpy but important

Marine stratocumulus cloud layers are just a 
few hundred meters deep.

They are capped by a strong inversion that is 
even thinner.

The in-cloud turbulence is driven mainly by 
very strong radiative cooling confined to an 
extremely thin layer.

It is virtually impossible to explicitly resolve 
these features in a large-scale model.

They are very important for climate.



NO DATA 0 10 20 30 40 50 60 70 80

Annual ISCCP C2 Inferred Stratus Cloud Amount

Percent

NO DATA -90 -70 -50 -40 -30 -20 -10 0 10 20 30 40

Annual ERBE Net Radiative Cloud Forcing

W/m**2

Figure from Norris & Leovy
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Impact on the Earth’s radiation budget



Doug Lilly





Figure from Bjorn Stevens

“Models of cloud-topped mixed layers”



Concentrated radiative cooling

Slingo et al. (1982)

9 K per hour!

Cloud depth ~ 300 m



Entrainment across cloud top



Fluxes due to entrainment

ρw′ h′ = − EΔh + ΔR

ρw′ q′ t = − EΔqt

E =
ρe3/2

M θ0

ghΔθv

E

More TKE leads to faster entrainment.
A stronger inversion leads to slower entrainment.

Rapid entrainment of dry air can break up a stratus cloud.
This is why weak inversions lead to smaller cloud amounts.

Klein & Hartmann (1993)



Fluxes due to entrainment

ρw′ h′ = − EΔh + ΔR

ρw′ q′ t = − EΔqt

E =
ρe3/2

M θ0

ghΔθv

E

More TKE leads to faster entrainment.
A stronger inversion leads to slower entrainment.

Rapid entrainment of dry air can break up a stratus cloud.
This is why weak inversions lead to smaller cloud amounts.

Klein & Hartmann (1993)



Clouds don’t entrain.

Turbulence entrains.

Clouds are turbulent.



Clouds don’t entrain.

Turbulence entrains.

Clouds are turbulent.



Stratocumulus clouds “lock in”
over the eastern subtropical oceans



Stratocumulus clouds “lock in”
over the eastern subtropical oceans

Strong static 
stability

Subsidence

Cold waterDry air aloft

Subtropical 
high

Coastal 
upwelling



Stratocumulus clouds “lock in”
over the eastern subtropical oceans

Radiatively 
driven 

turbulence

Strong cloud-
top radiative

cooling

Uniform 
cloudiness

Strong static 
stability

Cloud-top 
entrainment

Sufficiently 
deep, cool, 
humid layer

Subsidence

Cold water

High albedo

Dry air aloft

Subtropical 
high

Coastal 
upwelling

Strong static 
stability

Subsidence

Cold waterDry air aloft

Subtropical 
high

Coastal 
upwelling



Five approaches to boundary layer parameterization

Similarity theories

Eddy diffusion

Mixed-layer models

Higher-order closure

Mass fluxes



Higher-order closure 
(HOC)

A bar means a grid-area average, also called a 
“first moment.” It is a statistic.

A prime means a departure from a grid-area 
average. The average of a prime is zero.

A “prime prime bar,” which can be called a 
“second moment,” is a statistic that arises from 
correlated variations on unresolved scales.

Some second moments are fluxes of first 
moments.

A third moment has the form “prime prime 
prime bar.” Some third moments are fluxes of 
second moments.

A model that predicts anything higher than 
first moments is called a “higher-order closure” 
model.

q

′q

′w ′q

′w ′w ′q



HOC started in the 1960s

• Obscure technical reports

• Engineering applications

• Immediate interest from 
atmospheric scientists

Glushko, G. S., 1965: Turbulent Boundary Layer on a Flat Plate in an Incompressible Fluid. Bull. 
Acad. Sci. USSR, Mech. Ser., no. 4, 13-23.

Bradshaw, P., D. H. Ferriss, and N. P. Atwell, 1967: Calculation of Boundary Layer Development 
Using the Turbulent Energy Equation. J. Fluid Mech., 25, 593-616.

Beckwith, I. E. and D. M. Bushnell, 1968: Detailed Description and Results of a Method for 
Computing Mean and Fluctuating Quantities in Turbulent Boundary Layers. NASA TN D-4815.

Donaldson, C. duP., and H. Rosenbaum, 1968: Calculation of the turbulent shear flows through closure 
of the Reynolds equations by invariant modeling. NASA SP-216, pp. 231-253.



HOC is being used in Earth System Models today.

CLUBB is an implementation of HOC that is being 
used in both CESM and E3SM. 

There are other parameterizations based on HOC, 
including SHOC.



Fractional cloudiness

Sommeria & Deardorff (1977) and Mellor (1977)

Five parameters:

Two means

Two variances

One covariance



Jim Deardorff



Their idea

Variance of T

Variance of q

Covariance of 
T and q

parameters 
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Their idea

Variance of T

Variance of q

Covariance of 
T and q

parameters 
of joint 

Gaussian 
distribution

Fractional 
cloudiness

Mean of T

Mean of q

Sommeria and Deardorff used an assumed joint distribution of temperature and moisture.

They needed, as input, 2 first moments and 3 second moments to determine the 
parameters of the joint distribution. HOC can predict the 3 second moments.



Sample equations of HOC
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Closures Needed

1) Closures for the effects of higher 
moments that are not predicted, e.g., as 
mentioned above, the fourth moments in a 
third-order closure model.

2) Closures for moments involving the 
pressure, which occur in the equations for 
moments that involve velocity components. 

3) Closures for dissipation rates, which are 
especially important in the equations 
governing variances.

4) Closures to determine SGS phase changes 
(e.g., Sommeria and Deardorff, 1977; Mellor, 
1977) and other microphysical processes 
(e.g., Larson et al., 2005), as well as radiative 
heating and cooling.



• Flux and cloud fraction 
parameterizations in models

• Interpretation of observations 
and high-resolution simulations

What is HOC good for?



Is HOC a “theory of everything?”

Turbulence Deep convection Gravity waves

To represent all of these things, a very general closure would be needed.



Five approaches to boundary layer parameterization

Similarity theories

Eddy diffusion

Mixed-layer models

Higher-order closure

Mass fluxes



Mass fluxes
Reynolds averaging is exact (with grid-cell means) and completely general. We can write

where

is a mass flux. This demonstrates that mass fluxes arise purely from Reynolds averaging, and that they involve no approximation for . In practice, of course,  
must be finite. 

Sometimes we also make the approximation

  ,

which can be justified when  is sufficiently small, which it will be if the grid cell is sufficiently large. The approximate form is expected to fail at high resolution, when 
 can easily be comparable to or even larger than . 

We can calculate  if the  and  can be determined somehow. In principle we could define a mass flux for each square millimeter of a grid cell. This is not a 
good idea because so much detail is (presumably) unnecessary, and because it would be very impractical to deal with such a large number of mass fluxes. We need 
a way to reduce the number of mass fluxes to a manageable value, without losing too much accuracy. 

Suppose that we have a very detailed numerical simulation of the convective turbulence inside a grid cell, and we want to use the statistics of the simulation to 
compute values of , , and  that can be used ito obtain an accurate value of . Historically, plume models have been used to calculate the , and “mass-flux 
closures” have been used to determine the . As a result, there is a tendency to associate the mass-flux method with plume models, but we have shown above that 
mass fluxes can be defined without any reference to plumes. 

ρw′ h′ = ρ
J

∑
j=1

[σj (wj − w) (hj − h)] =
J

∑
j=1

[Mj (hj − h)] ,

Mj ≡ ρσj (wj − w)
J → ∞ J

Mj ≅ ρσjwj

w
w wj

ρw′ h′ Mj hj

σj wj hj ρw′ h′ hj
Mj



Randall JAS 1987

Randall, Shao, and Moeng, JAS 1992

Lappen and Randall, JAS 2001

Let’s include w in the joint distribution.

Selected first, 
second, and 

third moments 
of T, q, and w

Parameters 
of the

trivariate
joint PDF

Closure for 
higher 

moments

HOC 
equations

Closure for 
subgrid cloud 

fraction



Closures Found

1) Closures for the effects of higher 
moments that are not predicted, e.g., as 
mentioned above, the fourth moments in a 

third-order closure model. ✔

2) Closures for moments involving the 
pressure, which occur in the equations for 
moments that involve velocity components. 

3) Closures for dissipation rates, which are 
especially important in the equations 
governing variances.

4) Closures to determine SGS phase changes 
(e.g., Sommeria and Deardorff, 1977; Mellor, 
1977) and other microphysical processes 
(e.g., Larson et al., 2005), as well as radiative 

heating and cooling. ✔



Simple case of two delta functions

Mean (first moment):  

Variance (second moment about the mean): 
 where 

Third moment about the mean: 

Skewness 

h = σhu + (1 − σ) hd

h′ 
2 = σ (1 − σ) (δh)2 δh ≡ hu − hd

h′ 
3 = σ (1 − σ) (1 − 2σ) (δh)3

Sh ≡
h′ 

3

(h′ 

2)
3/2 =

1 − 2σ
σ (1 − σ)

Two 
delta 

functions

δh ≡ hu − hd

hd hu

h



Skewness 

δh = ± h′ 
2

σ (1 − σ)

h′ 
3 = σ (1 − σ) (1 − 2σ) [ h′ 

2

σ (1 − σ) ]
3

Sh ≡
h′ 

3

(h′ 

2)
3/2 =

1 − 2σ
σ (1 − σ)

σ =
1
2

1 ± Sh

4 + S2
h

δh = ∓ h′ 
2 (4 + S2

h)

If we know  and , we can calculate  and .

From , , and , we can calculate  and .

In this way, the predicted moments determine the 
distribution.

h′ 
2 h′ 

3 σ δh

σ δh h hu hd

δh ≡ hu − hd

hd hu

h



Phenomenology

One delta function represents the clouds, and the other represents the environment.



Momentum

T, q, and w are not enough.

What about the momentum fluxes?
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