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What do clouds do?

• Scatter, absorb, and emit radiation

• Precipitate

• Transport things vertically

‣ Energy

‣Water

‣Momentum

‣ Trace species

• Faciliate chemical reactions



Andrew Gettelman talked about 
microphysics parameterizations.

Robert Pincus discussed 
radiation parameterizations.

I will cover turbulence and convection.
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Forecasts have been getting better.

500 hPa height forecasts

Bauer et al., Nature, 2015
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A standard value of 0α =0.75° is used in this study. The sensitivity of area-averages of SEEPS with 

respect to this parameter is analysed in Section 4b.   

3 Verification results 

3.1 SEEPS results 

Figure 3 illustrates the temporal variation of precipitation forecast skill at D+3 as measured by 1-
SEEPS (higher values indicating more skill) in the extra-tropics and the tropics. Note that variations 
are considerably smoothed by the monthly averaging. A strong increase in skill at the transition from 
the northern hemisphere summer to winter seasons is noticeable in the extra-tropical score mainly 
because of the larger land area in the northern extra-tropics, which is represented by ~3200 stations, 
compared to  ~150 stations in the southern extra-tropics. The change itself represents the fact that it is 
relatively difficult to predict precipitation totals in convective situations which, over most land areas, 
are more common in summer. The magnitude of the seasonal variation in the extra-tropical score is on 
the order of 0.2, about four times as large as the differences between models, which are mostly smaller 
than 0.05. The highest tropical 1-SEEPS values of about 0.3 are similar to the lowest 1-SEEPS values 
in the extra-tropics. 

 

 
Figure 3: Time evolution of the running monthly mean of the 1-SEEPS score in the extra-tropics 
(a) and the tropics (b) on forecast day 3 for the CMC, JMA, NCEP, UKMO, and ECMWF models. 
CMC and NCEP data was available only from 1 June 2010 onwards. Numbers in parentheses give 
mean values over the period 1 Jun 2010 – 30 Apr 2011. 

In these plots, higher values mean more skill.

Midlatitude forecasts are less skillful in summer than in winter.

Tropical forecasts are less skillful than midlatitude forecasts. Haiden et al., 2012

Precipitation forecasting is hard, though.
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How global modelers have 
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• Convective clouds

‣ Deep
‣ Shallow

• Stratiform clouds above the boundary 
layer

‣ Convective detrainment
‣ Frontal lifting
‣ Orographic lifting

• Marine stratocumulus clouds



With a grid spacing of 20 km or less, we 
definitely do not have a statistically 
meaningful sample of large clouds in each 
grid column.  

Even with a grid spacing of 200 km, the 
number of large clouds in a grid column is 
worryingly small.

Sample size

This is a fundamental issue.



Kinetic theory 
of gases

Cloud 
parameterization

Players Molecules Clouds

Volume 1 cubic cm 1 model grid column

Sample size
A multiple of  

Avogadro’s number
   

Dozens to thousands of clouds

Simplifying 
assumptions

Point-like molecules;
Inter-molecular collisions 

neglected

Small updraft area;
Uniform environment;

Direct interactions among 
clouds neglected

Nonequilibrium 
effects

Brownian motion, etc. TBD, maybe 
mesoscale organization

Analogy

𝒪(1023)



Charney & Eliassen 1964

“The most difficult task … is to describe the turbulent transport properties of the cumulus convection field 
in statistical equilibrium with the large-scale field of motion.”



“…Because of convective instability, intense grid-scale 
convection develops exponentially in the area where the lapse 
rate is unstable. …Therefore, it is desirable to design a scheme 
of convection such that the grid-scale convection does not develop.”

“…We used a very simple scheme of convective adjustment 
depending upon both relative humidity and the lapse rate and 
successfully avoided the abnormal growth of grid-scale 
convection.”

Manabe et al. 1965
“Moist convective adjustment”



“…Because of convective instability, intense grid-scale 
convection develops exponentially in the area where the lapse 
rate is unstable. …Therefore, it is desirable to design a scheme 
of convection such that the grid-scale convection does not develop.”

“…We used a very simple scheme of convective adjustment 
depending upon both relative humidity and the lapse rate and 
successfully avoided the abnormal growth of grid-scale 
convection.”

Manabe et al. 1965
“Moist convective adjustment”

Closure based on release of instability, but without a model of penetrative convection.
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it is generally observed that downdraft air spreading along the surfaceobecomes indistinguishable from the surface air initially present in a short
time.

It is not possible to determine the total mass reaching the surface
in downdrafts. Undoubtedly much air is entrained in the layer 700-500
mb where Q reaches the minimum value in the mean profile of Fig. 15.
However, diffusion by entraining smaller cumuli provides at least part
of the heat balance for these layers rendering an estimate of the contribu-
tion by the thunderstorm downdraft mechanism impossible at present.
It is probably necessary to include much of the inflowing mass circulation
in the downdrafts, at least the inflow above 900 mb and perhaps even
much of that between 900-950 mb, the top of the mixed subcloud
layer. If this assumption is not made, the mass inflow above 900 mb
could hardly attain a heat content of 83.4 cal/gm in the mean and
ascend in buoyant cores to the high troposphere.
The mean heat content of the mass inflow between 900 and 700mh

(6.0X 1013g/sec) is also close to 80 caljgm, so that a total mass flow,of

iR evaporating. The rate of entrainment into the downdrafts may be0assumed to be largest in the layer 500-40C mb (highest liquid water
contents) and much less in the air above 300 mb. Hence a value of Q
about 80 cal/gm is probably representative of the heat content of mt:ch
of the downdraft air passing across the 500-mb surface. Then ~Q=83.4
-80.0=3.4 cal/gm and M'=6.8xl013 gm/sec, raising the mass in theO
undilute updrafts to 18.0X IOU gm/sec, an increase of 60 per cent over
the net mass circulation requirement. The downdrafts we are considering
here involve a mass flux of about 38 per cent of that in the undilute
updrafts, a reasonable figure.
Use of the downdraft mechanism has the great advantage of

permitting us to bring the descending air directly in contact with the
surface heat source, if the downdraft remains negatively buoyant all the
way down to the ground. Fig. 17 shows that this can indeed be the case.
Upon saturation, air entrained into the downdraft will be denser than the
unaffected portion of the environment in all layers and therefore will
be accelerated to the ocean or humid land surface whenever the initial
water content is sufficiently high. Using a cloud base of 200 m for the
descent, the surface temperature will be 22°C which is about correct for
thunderstorm outflow temperatures in the tropics. At such temperatures
there will be a rapid heat transfer from ground to atmosphere (Fig. 17);
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18. Heat budget for winter side of equatorial trough zone (unit 1015cal/see).
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ON THE HEAT BALANCE IN THE EQUATORIAL TROUGH ZONE
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HERBERT RIEHL
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and
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WoodsHole OceanographicInstitution

o
Abstract

The equatorial trough zone receives the latent heat
accumulated by the lower trades, lifts and converts the energy,
ba.lancingradiation 10886S, and exports the residue poleward aloft
in the fonn of sensible heat and potential energy.
We construct an energy budget for the 1O°·latitudebelt from

the trough poleward, using a coordinate system relative to its
poSitionat seasonal extremes. We first calculate its total export
requirement from recentradiation estimates of heat sourcesand
sinks. A complete check from the earth-to-atmosphere supply of
latent and serisibleheat is not at present possibleand the latter is
ca.Iculatedas residual, comingout a la.rgerfra.ctionofevaporation
than previous estimates. Using the integrated ,balance, lateral
export of enthalpy, potential energy and latent heat from the
poleward boundary is compu~d as a function of height, using
mean cross sectio~ of the trough zone"construc.~d from radio·
sondes, estimated precipitation, and a fitted mass circulation'
profile which is found to agree wellwith previous determinations,".,
Fina.lIy,the required vertical flUx'of'heatwithin the trough,;'

zone itself may be specified using the export and radiation-'

.; ,

, .

Strong, deep, partially upgradient 
upward energy transport 
by penetrative convection



Kuo 1965

“…We shall show that the statistical effect 
of the convective motions can be included 
without referring to their details by using a 
certain averaging process, and then we shall 
derive the formulas that express the latent 
heat released by the deep cumulus purely in 
terms of parameters of large scale 
quantities.”

Kuo used Joanne Malkus’s cloud model, but 
assumed that heating occurred by diffusion 
from updrafts rather than convective fluxes.



Arakawa & Schubert (1974)
What they included:

A spectrum of updrafts

Mass fluxes (ref.  AA 1969) — an emphasis on convective fluxes of energy, etc.

Quasiequilibrium closure

Oversimplified but explicit interactions of cumulus clouds with the boundary layer

Detrained liquid and ice — which were assumed to immediately return to vapor

They cited a total of 9 papers authored or co-authored by Joanne Simpson.



Arakawa & Schubert (1974)
What they included:

A spectrum of updrafts

Mass fluxes (ref.  AA 1969) — an emphasis on convective fluxes of energy, etc.

Quasiequilibrium closure

Oversimplified but explicit interactions of cumulus clouds with the boundary layer

Detrained liquid and ice — which were assumed to immediately return to vapor

Two of the many things that they left out:

Any real role for stratiform clouds, formed by detrainment or otherwise

Downdrafts

They cited a total of 9 papers authored or co-authored by Joanne Simpson.



Scale Separation

“Consider a horizontal area … large enough to contain an ensemble of cumulus clouds, 
but small enough to cover only a fraction of a large-scale disturbance. The existence of 
such an area is one of the basic assumptions of this paper.”

— Arakawa & Schubert 1974



Reynolds Averaging

It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the turbulent boundary layer. For this reason, we ``filter'' or 
“average’" or “smooth’" the data, and attempt to describe only the resulting statistics of the flow. Here we follow the approach of ``Reynolds Averaging,'' which 
takes its name from Osborne Reynolds, the famous aerodynamicist who invented it in the late 19th century. 

Suppose that 

where  is time and  is a source of . The quantity inside the divergence operator is a flux of  due to an advecting mass flux .

We now decompose each of the dependent variables as follows:

,    ,     .

This is called the “`Reynolds decomposition.” Here an overbar denotes an averaging operator that must be defined defined. Substitution gives

  .

Here we have neglected additional terms that arise from variations of the density of the air. We want to choose the averaging operator in such a way that the 
average of this equation reduces to

  .

Here the flux divergence term has two parts. The first involves the product of two averages, and the second involves the average of the product of two primes. 
The quantity  is the flux due to the product of two fluctuations. It can be called the “turbulent flux of ,” assuming that the fluctuations are associated with 
turbulence. Note, however, that fluctuations can also arise from other things, such as waves.

∂
∂t (ρq) + ∇ ⋅ (ρVq) = Sq

t Sq q q ρV

q = q + q′ V = V + V′ Sq = Sq + S′ q

∂
∂t [ρ (q + q′ )] + ∇ ⋅ [ρ (q + q′ ) (V + V′ )] = Sq + S′ q

∂
∂t (ρq) + ∇ ⋅ [ρ (q V + q′ V′ )] = Sq

q′ V′ q



Some of the Reynolds-averaged equations

Here , etc.Fs ≡ ρw′ s′ 

Revised September 23, 2024 at 4:09pm
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Here r is the density of the air, which is presumed to be quasi-constant at each height;
s is the dry static energy; qv is the water vapor mixing ratio; w is the vertical velocity; v
is the horizontal velocity vector; and c is the rate at which liquid water is converted into
precipitation, which then falls out and so acts as a sink of l. The vertical “eddy fluxes,”
Fs = rws�rw s, Fqv = rwqv�rw qv, Fl = rwl�rw l, and Fv ⌘ rwv�rw v can in prin-
ciple represent quite a variety of physical processes, but here we assume for simplicity that
above the boundary layer the fluxes are due only to the convective updrafts and downdrafts
associated with cumulus convection.

AS used a very simple cumulus cloud model to formulate the eddy fluxes that appear in
(8.44) - (8.46) in terms of a convective mass flux and the differences between the in-cloud
and environmental soundings. The cloud model was also used to formulate the net conden-
sation rate, C, per unit mass flux. AS allowed the possibility that clouds of many different
“types” coexist; here a cloud type can be roughly interpreted as a cloud size category. We
now briefly explain the AS parameterization, in a simplified way.

As a first step, we divide the domain into an arbitrary number of subdomains, each
having a characteristic fractional area , a characteristic vertical velocity , and correspond-
ing characteristic values of the moist static energy, dry static energy, water vapor mixing

284



Mass fluxes 1

Reynolds averaging can be written like this

where

is a mass flux. This demonstrates that mass fluxes arise purely from Reynolds averaging, and that they involve no approximation for 
. In practice, of course,  must be finite. 

Sometimes we also make the approximation

  ,

which can be justified when  is sufficiently small, which it will be if the grid cell is sufficiently large. The approximate form is expected to 
fail at high resolution, when  can easily be comparable to or even larger than . 

We can calculate  if the  and  can be determined somehow.

ρw′ h′ = ρ
J

∑
j=1

[σj (wj − w) (hj − h)] =
J

∑
j=1

[Mj (hj − h)] ,

Mj ≡ ρσj (wj − w)
J → ∞ J

Mj ≅ ρσjwj

w
w wj

ρw′ h′ Mj hj



Mass fluxes 1I

In principle we could define a mass flux for each square millimeter of a grid cell. This is not a good idea because so much detail is 
(presumably) unnecessary, and because it would be very impractical to deal with such a large number of mass fluxes. We need a way to 
reduce the number of mass fluxes to a manageable value, without losing too much accuracy.

Suppose that we have a very detailed numerical simulation of the convective turbulence inside a grid cell, and we want to use the 
statistics of the simulation to compute values of , , and  that can be used to obtain an accurate value of . 

There are at least three ways to do this.

σj wj hj ρw′ h′ 



Plumes

Historically, plume models have been used to calculate the , and “mass-flux closures” have been used to determine the . As a 
result, there is a tendency to associate the mass-flux method with plume models.

hj Mj



Budget for a small patch

Integrate over an area  to obtainAj

The area  is chosen so that the air within it 
has quasi-uniform properties.

The sum of all the  is assumed to fill the grid 
cell.

Each  may consist of multiple disconnected 
parts.

Aj

Aj

Aj

∂
∂t (ρh) = − ∇ ⋅ [ρvh + (Fh)H] −

∂
∂z [ρwh + (Fh)z] + ρSh

For , , and  this reduces to the continuity equation in the formh ≡ 1 Fh = 0 Sh = 0

∂
∂t (ρAj) = − ∮C

ρvn dl −
∂
∂z [Aj (ρw)j]

∂
∂t (ρjhjAj) = − ∮C

[ρvnh + (Fh)n] dl −
∂
∂z {Aj (ρwh)j

+ Aj [(Fh)z]j} + ρjAj (Sh)j



A simple cumulus cloud model

To go further, we need to know the soundings inside the updrafts. For this purpose, a simple cumulus cloud model is required. We assume 
that all cumulus clouds originate from the top of the boundary layer, carrying the mixed-layer properties upward. The mass flux changes with 
height according to

Here  is the entrainment rate, and  is the detrainment rate. The in-cloud profile of moist static energy, , is governed by

There are no source or sink terms in this equation because the moist static energy is unaffected by phase changes and/or precipitation 
processes, and we neglect radiative effects. 

By combining the two equations above, we can show that

Note that  is affected by entrainment, which dilutes the cloud with environmental air, but not by detrainment, which expels the cloud's own 
moist static energy at each level. 

∂Mc (z)
∂z

= E (z) − D (z)

E D hc (z)

∂
∂z [Mc (z) hc (z)] = E (z) h̃ (z) − D (z) hc (z) ≅ E (z) h (z) − D (z) hc (z)

∂hc (z)
∂z

=
E (z)
Mc

[h (z) − hc (z)]

hc



Entrainment reduces buoyancy

The cloud top is usually assumed to be the level of neutral buoyancy.



The small  limitσ
It is observed that convective updrafts occupy only a small fraction (~1%) of a “large-scale” area, 
so that  for all updrafts.  The reasons for this are well understood.σj ≪ 1

Also, when  for all updrafts, it makes sense to define an “environment” in which . σj ≪ 1 h ≅ h

Saturated  
updraft

Unsaturated  
environment



Up-Gradient Fluxes

∂h
∂z

< 0

∂h
∂z

> 0

In this example, fluxes are down-gradient in the lower 
troposphere and up-gradient in the upper troposphere.

Down-gradient fluxes are expected when the eddy’s 
depth is shallow compared to the depth over which 

 changes sign.

Deeper, “penetrative” eddies can produce up-gradient 
fluxes.

Conclusion: Up-gradient fluxes are not “mysterious.”

∂h/∂z

ρw′ h′ = ρ
N

∑
i=1

[σi (wi − w) (hi − h)]

Here the dashed lines show in-cloud 
soundings  with different entrainment rates.hi



Plumes can be generalized using the 
EDMF (Eddy-Diffusivity Mass-Flux)  approach.

Siebesma, A.P., P.M.M. Soares, and J. Teixeira, 2007: A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer. J. Atmos. Sci., 64, 1230-1248.

Suselj, K., Kurowski, M. J., & Teixeira, J. (2019). A Unified Eddy-Diffusivity/Mass-Flux Approach for Modeling Atmospheric Convection, J. Atmos. Sci.,, 76(8), 2505-2537.

ρw′ h′ = ρ
N

∑
i=1

[σi (wi − w) (hi − h)] − K
∂h
∂z

Here the mass-flux term represents the flux produced by the deep, “penetrative” eddies, 
and the eddy-diffusion represents the shallow “turbulent” eddies.



Plumes are idealizations.

Updrafts
Downdrafts
Environment

The real sky is not this tidy.



Plumes are idealizations.

Chess pieces on a board with pre-assigned roles

Updrafts
Downdrafts
Environment

The real sky is not this tidy.



Plumes are not very flexible.

Built-in vertical structures

Assumed cloud-base levels

No time-dependence



Randall JAS 1987

Randall, Shao, and Moeng, JAS 1992

Lappen and Randall, JAS 2001

Selected first, 
second, and 

third moments 
of T, q, and w

Parameters 
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trivariate
joint PDF

Closure for 
higher 

moments

HOC 
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Closure for 
subgrid cloud 

fraction

A second way: HOC



Simple case of two delta functions

Mean (first moment):  

Variance (second moment about the mean): 
 where 

Mass flux: 

w = σwu + (1 − σ) wd

w′ 
2 = σ (1 − σ) (δw)2 δw ≡ wu − wd

Mc = σ (1 − σ) δw
Two 
delta 

functions

wd wu

w



Mass flux for the case of two delta functions

Means:     and   

Flux of :   

But    and ,

so ,

which simplifies to 

.

The flux of any  is proportional to 

, 

which is called the “mass flux.”  The mass flux goes to zero if  or .   Why?

h = σhu + (1 − σ) hd w = σwu + (1 − σ) wd

h ρw′ h′ = ρ [σ (wu − w) (hu − h) + (1 − σ) (wd − w) (hd − h)]
hu − h = (1 − σ) (hu − hd) hd − h = − σ (hu − hd)

ρw′ h′ = ρ [σ (1 − σ)2 (wu − wd) (hu − hd) + σ2 (1 − σ) (wu − wd) (hu − hd)]

ρw′ h′ = ρσ (1 − σ) (wu − wd) (hu − hd)

h

M ≡ ρσ (1 − σ) (wu − wd)

σ → 0 σ → 1

Two 
delta 

functions

wd

wu

huhd

σ

1 − σ



Skewness 

δw = ± w′ 
2

σ (1 − σ)

w′ 
3 = σ (1 − σ) (1 − 2σ) [ w′ 

2

σ (1 − σ) ]
3/2

Sw ≡
w′ 

3

(w′ 
2)

3/2 =
1 − 2σ
σ (1 − σ)

σ =
1
2

1 ± Sw

4 + S2
w

δw = ∓ w′ 
2 (4 + S2

w)

If we know  and , we can calculate  and .

From , , and , we can calculate  and .

In this way, the predicted moments determine the 
distribution.

w′ 
2 w′ 

3 σ δw

σ δw w wu wd

wd wu

w

How to solve



A third way: The multi-fluid model

∂
∂t (ρAj) = − ∮C

ρvn dl −
∂
∂z [Aj (ρw)j]

∂
∂t (ρjhi

j Aj) = − ∮C
[ρvnh + (Fh)n] dl −

∂
∂z {Aj (ρwh)j

+ Aj [(Fh)z]j} + ρjAj (Sh)j



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
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Figure 1. Sketch illustrating a simplified example of the intra-cell and inter-cell mass ex-

changes at at a particular level. Two neighboring grid cells are shown and are denoted by i and

i0. Only two subdomains appear in this sketch. In each grid cell, the blue “clear-sky” subdomain

is labeled j0, and the white “cloudy” subdomain is labeled j. Both subdomains are found in each

of the two grid cells. In this example, subdomain j consists of multiple disconnected clouds, one

of which straddles the wall that separates grid cells i and i0. The other clouds are contained en-

tirely within a single grid cell. For grid cell i, the boundary of subdomain j consists of the thin

black scalloped curves at the cloud edges, plus the thicker red line segment where a portion of

subdomain j intersects the wall that separates the two grid cells. The black arrow represents an

intra-cell mass flow from subdomain j0 and j, for one particular patch of subdomain j. Similar

flows can occur for the other patches, but are not shown in the sketch. The superscripts i on the

intra-cell fluxes have also been omitted, for simplicity. The red line segment marks the portion

of the grid-cell wall that is straddled by subdomain j (i.e., air of species j). The length of the

red line segment is li,i
0

j . Subdomain j of grid cell i and subdomain j of grid cell i0 “touch” along

the red line segment. The red arrow represents an inter-cell mass flow from subdomain j of cell i

into subdomain j of cell i0. For simplicity, the sketch does not show intra-cell mass exchanges for

subdomain j0.

as shown in the example of Fig. 1, then the line integral is understood to include all of323

their boundaries.324

The black arrow in Fig. 1 represents an intra-cell mass flow Ei

j0,j from subdomain325

j0 and j, for one particular patch of subdomain j. Similar intra-cell mass fluxes can oc-326

cur for the other subdomain boundaries, but for simplicity they are not shown in the sketch.327

The dimensions of Ei

j0,j are mass per unit length per unit time. The first subscript on328

Ei

j0,j denotes the subdomain of origin, and the second denotes the subdomain of arrival,329

so that330

Ei

j0,j = �Ei

j,j0 . (12)

Eq. (12) implies that Ei

j,j
= 0 for all j, and of course it is also true that (Fh)

i

j,j
= 0331

for all j.332

The grid-cell walls are fixed in space, i.e., they are Eulerian. The inter-cell mass333

flux across the red line in the figure is represented by the red arrow in the figure. It car-334

ries air across the grid-cell wall separating subdomain j of cell i and subdomain j of cell335

i0, in either direction. It is given by the density of the air times the component of the336

wind that is normal to the cell wall times the length of the portion of the grid-cell bound-337

–9–

Inter-cell and intra-cell mass fluxes

Ei
j′ ,j = − Ei

j,j′ 



Stratiform clouds matter, 
and not just for radiation.



Fifty years later, downdrafts 
still present many issues.



“The equilibrium water vapor content of the 
environment depends sensitively on the processes 
that determine the amount of cloud water 
remaining in detraining air.”



Q. J. K. Meteorol. Soc. (2001), 127, pp. 53-72 

Estimation of entrainment rate in simple models of convective clouds 

By DAVID GREGORY * 
European Centre for Medrurn-Runge Weather Forecasts, UK 

(Received 17 M a c h  2000, revned 26 July 2000) 

S 11 M M A R )  
A method for estimating lateral entrainment rate in clouds is suggested, linking its magnitude to buoyant 

production of vertical kinetic energy within a cloud updraught. In single-column model studies the formulation 
captures the high values of entrainment seen in shallow convection and the values an order of magnitude lower in 
cases of deep convection, as suggested by observational studies and large-eddy model simulations, together with 
a realistic vertical variation. Comparison is made with other recent attempts to parametrize entrainment. 

KEYWORDS: Convection Entrainment Parametrization 

1 .  INTRODUCTION 

The concept of an entrainment rate? is commonly used to describe the inflow 
of air into cumulus clouds and is a crucial parameter in the mass-flux approach to 
the parametrization of moist convection. However, its specification has been rather 
ad hoc, referring back to studies of plumes in water-tank experiments and commonly 
being taken to be inversely proportional to cloud radius (Simpson and Wiggert 1969). 
Recent work using large-eddy simulations (LES) of ensembles of cumulus clouds have 
indicated that the values suggested by such methods are an order of magnitude smaller 
than found in shallow cumulus clouds (Siebesma and Cuijpers 1995). In fact this has 
been known since the 1970s, when analysis of data from the BOMEX and ATEX 
experimentst provided similar insights (e.g. Albrecht 1979). 

Studies of the parametrization of shallow convection have suggested that increased 
entrainment rates, matching those diagnosed from LES models, improve simulated 
boundary-layer thermodynamic structure (Siebesma and Holtslag 1996). However, en- 
trainment rate appears to be a highly variable quantity. Siebesma and Cuijpers (1 995) 
suggest that the entrainment rate for convection in BOMEX varies with height, from 
2.5 x m-’ near cloud top. For an ASTEX case 
Bretherton and Pincus ( 1995) diagnosed a rate of I .5 x 1 Ow3 m-’ with little variation 
with height. Grant and Brown (1999) suggest that rates vary by a factor of two between 
shallow convection observed during BOMEX and a case of shallow convection observed 
over the North Sea (Smith and Jonas 1995). In a study of an ensemble of deep conective 
clouds simulated by a cloud-resolving model (CRM), Lin (1999) demonstrates a wide 
variation of entrainment rates for clouds of different depths. Clouds with lower cloud- 
top heights had the largest entrainment rates. Entrainment was also found to reduce with 
height through the depth of a cloud. 

It is desirable for the formulation of entrainment used in convective parametrizations 
to reflect such variations, both in the vertical and from case to case. Siebesma (1997) 
suggested, on the basis of scaling arguments, that entrainment rate might vary inversely 
with height above cloud base. He also showed that the formulation of entrainment 
suggested by Nordeng ( 1  994) for use in deep convective parametrization could be 
applied with some success to shallow convection. Grant and Brown (1999) considered 

m-’ near cloud base to 1 .S x 

* Corresponding address: Met Office, Hadley Centre, London Road, Bracknell, Berkshire RG 12 2SY, UK. e-inail: 
dgregory (3 meto,gov.uk 
t Here ‘entrainment rate’ is equivalent to ‘fractional entrainment rate’ defined by Arakawa and Schubert (1974). 
Detrainment rate is used similarly. 
f Barbados Oceanographic and Meteorological Experiment and Atlantic Tropical Experiment, respectively. 
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Entrainment is a turbulent process. 
Its importance was recognized already by Henry Stommel (1947).

Cumulus clouds are turbulent.
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ABSTRACT

Two recent activities offer an opportunity to test general circulation model (GCM) convection and its
interaction with large-scale dynamics for observed Madden–Julian oscillation (MJO) events. This study
evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain
evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining
convection produce the most realistic dependence of convection depth on columnwater vapor (CWV) during
the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among
models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs.
GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition
also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission
data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and
evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep
convection as a predictor of a poorMJO simulation. Convection weaklymoistens the dry region in goodMJO
simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset.
Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of
cloud/moisture greenhouse enhancement as the primaryMJO energy source. The authors’ results suggest that
both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a
successful MJO simulation.

1. Introduction

The Madden–Julian oscillation (MJO; Madden and
Julian 1971), a planetary-scale disturbance that propa-
gates eastward at ;5m s21, is the most important con-
tributor to tropical subseasonal weather variability. It
influences a wide variety of phenomena within and
outside the tropics, including the Asian and Australian

monsoons, El Niño, winter precipitation in the western
United States, and tropical cyclones (see Zhang 2013
for a complete review).
Yet despite its practical significance, the MJO is of

even more interest because its physical basis is not well
understood (Zhang et al. 2013). Almost all other tropical
large-scale wave modes observed via their effects on
outgoing longwave radiation (OLR), and thus convec-
tion (Wheeler and Kiladis 1999), are predicted from
shallow-water theory on an equatorial beta plane
(Matsuno 1966). The MJO is not predicted by classical
theory yet is prominent in the Wheeler and Kiladis
(1999) analysis. This suggests that unlike other wave

Corresponding author address: Anthony D. Del Genio, NASA
Goddard Institute for Space Studies, 2880 Broadway, New York,
NY 10025.
E-mail: anthony.d.delgenio@nasa.gov
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Organized convective systems: Archetypal dynamical models, mass and 
momentum flux theory, and parametrization 

By MITCHELI W MONCRIEFF 
National Center for Atmospheric ReJeurc h * ,  Boulder. Colorado 80307-3000, U S A 

(Rweived 17 April IUOI rcrised 20 Mav 1992) 

SLIMMARY 
A dynamical basis is established for understanding the structure and transport properties of organized 

convection and for  expediting its parametrization in large-scale models. A two-dimensional model provides an 
exact theory of the momentum transport by mesoscnlc convective hystems and similar phenomena. The system- 
scale dynamics are  supposed to dominate local proccsscs and are modelled by a stationary triple-branch airflow 
regime consisting of a double-branch updraught and a downdraught. It  is argued that a jump updraught is 
essential and has a fundamental effect on the momentum transport. The triple-branch model degenerates into 
a form of conservative density current; another limiting case consists of a propagating positive pressure jump 
of maximum amplitude-an overturning updraught but no downdraught. The functional relationship among 
dynamical parameters is determined by a characteristic regime equation derived from elementary nonlinear 
Lagrangian conservation properties and the volume integral of thc horizontal-momentum equation. 

The inflow to  the archetypal jump updraught is constant. An example shows that the inclusion of shear in 
this region alters the detailed shape of the momentum flux profile but  its fundamental character, namely the 
negative values of momentum flux for a system travelling in the positivc x-direction, is retained. This result. 
together with recent numerical simulations. implies that low-level shear directly influences the initiation and 
evolution of convective elements, whereas the mature-state fluxes for which the system-scale flow organization 
and tilt is paramount is a product of the distribution of heat sources/sinks and deep tropospheric shear. The 
universal nature of the momentum flux profiles is explained in elementary terms by appealing to dynamical 
theory. 

The physical basis of the inodel and the momentum flux profiles arc validated by using published results. 
The archetype emulates the basic character of the mass and momentum fluxes by mesoscale convective systems. 
For example an upper-tropospheric flow deceleration is consistent with the observed effect of tropical cloud 
clusters on the mean flow but is distinct from the balanced response due to diabatic heating. 

The theory is used to develop a dynamical approach to the parametrization of organized convective 
processes that have hitherto been neglected in global models. Mass and momentum fluxes are obtained 
from the archetypal model in an approach that is fundamentally different from the statistical or averaging 
approximations that characterize present techniques. The activation of thc parametrization scheme is also 
studied. Mass-flux criteria arc used to define an amplitude function for the mesoscale flux divergence to 
incorporate the flux laws into the large-scale equations. The work can be extended to  include thermodynamic 
fluxes by using generalized conservation properties. 

1. INTRODUCTION 
Organized motion systems are inherent throughout the span of atmospheric scales, 

and coherent structures have long been a feature in geophysical fluids. The general 
problem is of a fundamental nature and organized deep convection is made additionally 
complicated by the introduction of multi-phase physics. Since only a few processes can 
be resolved adequately in numerical models, subgridscale transports must be approxi- 
mated or ‘parametrized’. Direct numerical simulation is an exception because molecular 
processes require no approximation, but the spatial span of the computational domain 
is then restrictively small, and there is no general principle linking molecular and eddy 
flux laws. Although there is no reason to expect individual motion systems on diverse 
scales to be independent, the mathematical intractability of nonlinear dynamics requires 
that individual systems be idealized. The theme of this paper is the provision of a 
theoretical basis for understanding organized convection and its transports, especially 
for establishing the most elementary (archetypal) representation of the processes involved 
and determining their effect on the mean flow. In particular, a common type of organized 
convective system is approximated in a dynamical theory that is a simplified, and hence 
a more tractable, version of previous work by the present author and colleagues. 

* The National Center for Atmospheric Research is sponsored by the National Science Foundation. 
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Convective momentum transport



What determines 
the convective mass flux?



Closures

A “closure” determines the intensity of the convection.



Quasi-Equilibrium Closure

“When the time scale of the large-scale forcing, is sufficiently larger than the 
[convective] adjustment time, … the cumulus ensemble follows a sequence of 
quasi-equilibria with the current large-scale forcing. We call this … the quasi-
equilibrium assumption.”

“The adjustment … will be toward an equilibrium state … characterized by 
… balance of the cloud and large-scale terms…”

-- AS 74



Sources and sinks of buoyancy

Convective terms 
(Response)

Non-convective terms 
(Forcing)

Let  be a generalized measure of the CAPE.

Then 

A = A (T, q, λ)

( ∂A
∂t )

λ
=

∂A
∂T

∂T
∂t

+
∂A
∂q

∂q
∂t

( ∂A
∂t )

λ
= ∫

λmax

0
K (λ, λ′ ) Mc (λ′ ) dλ′ + F (λ)

Substitute for 
circled quantities



From Wayne’s dissertation



The quasi-equilibrium approximation

R + F ≅ 0

0 ≅ ∫
λmax

0
K (λ, λ′ ) Mc (λ′ ) dλ′ + F (λ)

Drop the time-rate-of-change term:

Solve for .Mc (λ)

In order for this approach to work, we have other be able to 
separate the convective response from the non-convective forcing.



A more basic issue:
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A more basic issue:

Can we really separate the forcing from the response?

Surface fluxes are influenced by deep convection.

Stratiform precipitation is influenced by deep convection.

Radiatively active stratiform clouds are influenced by deep convection.

Randall and Pan (1993, p. 143):
“… it is not always clear which processes are convective and which are not.”

Randall, D. A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In The Representation of 
Cumulus Convection in Numerical Models, a Meteorological Monograph published by the American Meteorological Society, K. Emanuel and D. Raymond, Eds., 
pp. 137-144.



Forcing

Response



Delayed response

C(t) = R[F(t −τ )]

t

With rapidly changing conditions, equilibrium is not approximated (even with a large sample 
size), but the convection can still be deterministic.

C can’t keep up with F.



Deterministic parmeterization

F

C

C(t) = R[F(t)]



Stochasticity

With a small sample size but slowly changing conditions, we get non-deterministic, non-equilibrium behavior. 

C

F

C(t) = R[F(t)]

Width proportional
 to mean (?)
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Stochastic representation of model uncertainties in the ECMWF Ensemble 
Prediction System 

By R. BUIZZA*, M. MILLER and T. N. PALMER 
European Centre for Medium-Range Weather Forecasts, UK 

(Received 18 August 1998; revised 19 March 1999) 

SUMMARY 
A stochastic representation of random error associated with parametrized physical processes (‘stochastic 

physics’) is described, and its impact in the European Centre for Medium-Range Weather Forecasts Ensemble 
Prediction System (ECMWF EPS) is discussed. Model random errors associated with physical parametrizations 
are simulated by multiplying the total parametrized tendencies by a random number sampled from a uniform 
distribution between 0.5 and 1.5. A number of diagnostics are described and a choice of parameters is made. 
It is shown how the scheme increases the spread of the ensemble, and improves the skill of the probabilistic 
prediction of weather parameters such as precipitation. A choice of stochastic parameters is made for operational 
implementation. The scheme was implemented successfully in the operational ECMWF EPS on 21 October 1998. 

KEY WORDS: Ensemble forecasting Model errors Numerical weather prediction Parametrization 

1. INTRODUCTION 

Routine real-time execution of the European Centre for Medium-Range Weather 
Forecasts Ensemble Prediction System (ECMWF EPS) began in 1992, with a 31- 
member T63L19 configuration (spectral triangular truncation T63 and 19 vertical levels; 
Palmer et al. 1993; Molteni et al. 1996). A major upgrade to a 51-member TI 159L31 
system (spectral triangular truncation T159 with linear grid) took place in 1996 (Buizza 
et al. 1998). From its inception, the EPS has been based on the premise that errors in 
medium-range forecasts are predominantly associated with uncertainties in initial con- 
ditions. As such, the EPS is based on multiple integrations of the ECMWF operational 
model (albeit at lower resolution), from an ensemble of initial conditions created by 
adding perturbations to the operational analysis. 

The philosophy of basing the EPS on perturbed initial conditions, or in other words 
on a ‘perfect-forecast-model assumption’, is consistent with results from Downton and 
Bell (1988), and, more recently, from Richardson (1998). In these studies, substantial 
differences between forecasts from the ECMWF and the UKMO (United Kingdom 
Meteorological Office) operational models could mostly be traced to differences be- 
tween the two operational analyses, rather than between the two forecast models. A 
similar ‘perfect-model’ strategy is followed at the US National Centers for Environ- 
mental Prediction (NCEP), using initial perturbations generated using ‘bred-vectors’ 
(Tracton and Kalnay 1993; Toth and Kalnay 1993). 

On the other hand, recent results from Harrison et al. (1 999) indicate that the impact 
of model uncertainties on forecast-error cannot be ignored, and that in some respects an 
ensemble system based on two (or more) models may be superior to an ensemble based 
on just one. 

There is further evidence that uncertainties in model formulation may be a signifi- 
cant factor in accounting for forecast-errors in the medium range. Specifically, although 
the root-mean-square (r.m.s.) spread of the ECMWF EPS agrees well with the error of 
the unperturbed control forecast at around day 2, the spread is notably smaller than the 
control r.m.s. error later in the medium range. 

Whilst the use of perturbations with larger initial amplitude would reduce spread 
underestimation in the late forecast range, it would also cause performance to deteriorate 
* Corresponding author: European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berk- 
shire RG2 9AX, UK. 
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ensemble system based on two (or more) models may be superior to an ensemble based 
on just one. 
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cant factor in accounting for forecast-errors in the medium range. Specifically, although 
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Prognostic closure

( ∂A
∂t )

λ
= ∫

λmax

0
K (λ, λ′ ) Mc (λ′ ) dλ′ + F (λ)



Example #1 of a prognostic closure: 
Prognostic CKE

∂K
∂t

= B −
K

τdis

B = (Mc)B
A

Predict the vertically integrated cumulus 
kinetic energy (CKE) for each cloud type.

Here  is the cloud base convective 

mass flux, and  is the CAPE.
(Mc)B

A

K = α (Mc)2
B

A closure assumption that relates  to  K (Mc)B

2α (Mc)B

∂
∂t (Mc)B

= (Mc)B
A −

α (Mc)2
B

τdis Substitution gives this.

∂
∂t (Mc)B

=
A
2α

−
(Mc)B

2τdis

Equilibrium solution  

Simplification gives this. 

(Mc)B
= Aτdis/α
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Example #2 of a prognostic closure: 
Super-Parameterization



Parameterizations for low-
resolution models are designed to 
describe the collective effects of  
ensembles of clouds.

Parameterizations for high-
resolution models are designed to 
describe what happens inside 
individual clouds.

Increasing
resolution

GCM CRM

Parameterized processes 
on coarse and fine meshes



Parameterizations for low-
resolution models are designed to 
describe the collective effects of  
ensembles of clouds.

Parameterizations for high-
resolution models are designed to 
describe what happens inside 
individual clouds.

Increasing
resolution

GCM CRM

Parameterized processes 
on coarse and fine meshes

Expected values --> Individual realizations



•  Each CRM runs continuously.

•  The CRMs do not communicate with each other, so the model is embarrassingly parallel.

•  The width of the CRM domain is not tied to the GCM grid size, so a super-parameterization 
is not resolution-independent.

GCM
Parameterized

Convection
Microphysics
Radiation
Turbulence

GCM CRMAdvective Forcing

Heating & Drying

Parameterized

Microphysics
Radiation
Turbulence

Advective Forcing

Heating & Drying

Advective Forcing

Heating & Drying

lotosthingsldijfslf;skdfslkdfjslfd! "##### $#####
Super-Parameterization

Super-Parameterization



What’s different?

• The equation of motion

‣ No closure assumptions

‣ No triggers

‣ Mesoscale organization

• CRM memory

‣ Delay in convective response

‣ Sensitive dependence on initial 
conditions

• Almost embarrassingly parallel

Superparameterization is a fancy (and expensive) prognostic closure.



A prognostic closure can be sensitivity 
dependent on its initial conditions, and 
can therefore behave chaotically.

This means that prognostic 
parameterizations can “automatically” be 
stochastic parameterizations.

C

F

C(t) = R[F(t)]



Reasons to use prognostic closure

There is no need to distinguish between forcing and response.

The convection has a memory and can respond with some delay.

Prognostic closure is simpler and computationally faster.

Because a prognostic parameterization can be sensitively 
dependent on its initial conditions, it can behave stochastically.



Reasons to use prognostic closure

There is no need to distinguish between forcing and response.

The convection has a memory and can respond with some delay.

Prognostic closure is simpler and computationally faster.

Because a prognostic parameterization can be sensitively 
dependent on its initial conditions, it can behave stochastically.

*



Global Cloud Resolving Models

Slide from Hiro Miura



Scales larger than  are well resolved.

Subgrid-scales are not resolved at all, and therefore must be parameterized.

Scales close to the grid spacing are “represented” but not well resolved. 
They should be “partially parameterized.”

10 δx

The Grey Zone



Crossing the grey zone



There has always been a grey zone.

With  km, the smaller synoptic scales are in the grey zone.

With  km, the meso scales are in the grey zone.

With  km, thunderstorms are in the grey zone.

With  km, turbulence is in the grey zone.

δx = 400

δx = 40

δx = 4

δx = 0.4



Two Grey-Zone issues

Resolution

Sample size



Resolution-independent parameterizations

Updrafts occupy a small fraction 
of each grid cell.

Low resolution

Convective transport occurs on the 
subgrid scale.

Quasi-equilibrium closure is useful.
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Resolution-independent parameterizations

Updrafts occupy a small fraction 
of each grid cell.

Low resolution

Convective transport occurs on the 
subgrid scale.

Quasi-equilibrium closure is useful.

Some grid cells are filled by 
updrafts.

High resolution

Convective transport occurs on the 
grid scale.

Quasi-equilibrium breaks down.

In principle, a model that uses resolution-independent parameterizations should converge to 
the Navier-Stokes equations as .δx → 0



Resolution-independent models

One set of equations 

One code

One set of values for the adjustable parameters

A resolution-independent model can be run with a grid spacing of 100 km or 100 m, and everything in between.

A resolution-independent model  would be a very useful tool, in a practical sense.

In the process of developing (or trying to develop) a resolution-independent model we will learn a lot.  



Resolution-independent parameterizations must be

Prognostic
The current state depends on the past history.
Processes are not in equilibrium.
Life cycles can play out on scales just below the grid scale.

Non-local
The state of a single column is not sufficient to determine 
what is happening there.
Eddies can be advected or propagate between grid 
columns.

Very flexible
Deep convection must be parameterized on coarse grids.
Shallow convection and turbulence must be parameterized 
on fine grids.

X. Huang et al.: SIMA-MPAS (V1.0) 8139

Table 1. A list of experiments in this study and the key configuration information.

Dycore/model Component set Grid spacing Grid Simulation time Vertical Physics/dynamics time step
experiments columns level and microphysics

MPAS F2000climo 120 km 40 962 5 years L32, L58 1800/900 s, MG2
FV F2000climo ⇠ 1� 55 296 5 years L32, L58 1800/1800 s, MG2
MPAS FHIST 60–3 km 835 586 1999–2004, Nov–Mar L58 120/20 s, MG2
MPAS FHIST 60–3 km 835 586 1999–2000, Nov–Mar L58 120/20 s, MG3
MPAS FHIST 60 km 163 842 2000–2002 L58 900/450 s, MG2

Figure 1. SIMA-MPAS mesh configuration for the 60–3 km experiments. (a) The global-domain mesh configuration with total grid columns
of 835 586; (b) the zoomed-in region (see the red box depicted in panel a) for the mesh structure from 60 to 3 km.

takes the station observations from the Global Histor-
ical Climatology Network – Daily (GHCN-D) dataset
(Menne et al., 2012) and applies a weighted regression
scheme that accounts for multiple factors affecting the
local climatology (Daly et al., 2017).

– Livneh gridded observationally based precipitation
dataset. In addition to PRISM data, to better account for
extreme precipitation, recently released Livneh precip-
itation data (Pierce et al., 2021; http://cirrus.ucsd.edu/
~pierce/nonsplit_precip/, last access: September 2022)
are also used for model evaluation. The data (⇠ 6 km
grid resolution) are shown to perform significantly bet-
ter in reproducing extreme precipitation metrics than
previous version (Pierce et al., 2021).

– Snow water equivalent (SWE) data over CONUS. This
is the observational data product we use for snowpack
diagnostics. The data are available from the National
Snow and Ice Data Center (NSIDC) (at https://nsidc.
org/data/nsidc-0719/versions/1, last access: Septem-
ber 2022). The product provides daily 4 km SWE from
1981 to 2021, developed at the University of Arizona.
The data assimilated in situ snow measurements from
the Snow Telemetry (SNOTEL) network and the Coop-
erative Observer Program (COOP) network with mod-
eled, gridded temperature and precipitation data from
PRISM (Zeng et al., 2018; Broxton et al., 2019).

– CONUS (Continental U.S.) II High Resolution Present
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et al. (2021) (accessible at https://rda.ucar.edu/datasets/
ds612.5, last access: January 2022). The horizontal grid
resolution is 4 km with forcing from the mean of the
CMIP5 model for both present (1996–2015) and future
(2080–2099) mean climate, with hourly output. For the
study region we focus on here (i.e., over the western
USA), the simulations provide a more realistic depiction
of the mesoscale terrain features, critical to the success-
ful simulation of mountainous precipitation (Rasmussen
et al., 2021).

The topography details are shown in Fig. 2 over the west-
ern US study region, showing that the complex terrains over
coastal and mountainous regions have been well resolved
in SIMA-MPAS at 3 km resolution (in contrast to 60 km).
This is comparable to the topography details in the WRF
mesoscale model at a similar resolution, although we do no-
tice the smoother topography in SIMA-MPAS over the 3 km
mesh bounds and transient domains (see Fig. S1). For fu-
ture regional refined applications, we would suggest hav-
ing a reasonably larger domain area than the study region
at the finest resolution to accommodate the noise and in-
stability from mesh transition. When applied, we regridded
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Table 1. A list of experiments in this study and the key configuration information.
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MPAS FHIST 60 km 163 842 2000–2002 L58 900/450 s, MG2

Figure 1. SIMA-MPAS mesh configuration for the 60–3 km experiments. (a) The global-domain mesh configuration with total grid columns
of 835 586; (b) the zoomed-in region (see the red box depicted in panel a) for the mesh structure from 60 to 3 km.
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Figure 1. Sketch illustrating a simplified example of the intra-cell and inter-cell mass ex-

changes at at a particular level. Two neighboring grid cells are shown and are denoted by i and

i0. Only two subdomains appear in this sketch. In each grid cell, the blue “clear-sky” subdomain

is labeled j0, and the white “cloudy” subdomain is labeled j. Both subdomains are found in each

of the two grid cells. In this example, subdomain j consists of multiple disconnected clouds, one

of which straddles the wall that separates grid cells i and i0. The other clouds are contained en-

tirely within a single grid cell. For grid cell i, the boundary of subdomain j consists of the thin

black scalloped curves at the cloud edges, plus the thicker red line segment where a portion of

subdomain j intersects the wall that separates the two grid cells. The black arrow represents an

intra-cell mass flow from subdomain j0 and j, for one particular patch of subdomain j. Similar

flows can occur for the other patches, but are not shown in the sketch. The superscripts i on the

intra-cell fluxes have also been omitted, for simplicity. The red line segment marks the portion

of the grid-cell wall that is straddled by subdomain j (i.e., air of species j). The length of the

red line segment is li,i
0

j . Subdomain j of grid cell i and subdomain j of grid cell i0 “touch” along

the red line segment. The red arrow represents an inter-cell mass flow from subdomain j of cell i

into subdomain j of cell i0. For simplicity, the sketch does not show intra-cell mass exchanges for

subdomain j0.

as shown in the example of Fig. 1, then the line integral is understood to include all of323

their boundaries.324

The black arrow in Fig. 1 represents an intra-cell mass flow Ei

j0,j from subdomain325

j0 and j, for one particular patch of subdomain j. Similar intra-cell mass fluxes can oc-326

cur for the other subdomain boundaries, but for simplicity they are not shown in the sketch.327

The dimensions of Ei

j0,j are mass per unit length per unit time. The first subscript on328

Ei

j0,j denotes the subdomain of origin, and the second denotes the subdomain of arrival,329

so that330

Ei

j0,j = �Ei

j,j0 . (12)

Eq. (12) implies that Ei

j,j
= 0 for all j, and of course it is also true that (Fh)

i

j,j
= 0331

for all j.332

The grid-cell walls are fixed in space, i.e., they are Eulerian. The inter-cell mass333

flux across the red line in the figure is represented by the red arrow in the figure. It car-334

ries air across the grid-cell wall separating subdomain j of cell i and subdomain j of cell335

i0, in either direction. It is given by the density of the air times the component of the336

wind that is normal to the cell wall times the length of the portion of the grid-cell bound-337

–9–

The multi-fluid approach looks promising.



A way to study this issue: 
Periodic “forcing” in a domain of specified size

[34] In this example, large, organized mesoscale clusters/
lines have produced precipitation via outflow lifting. The
clusters persist for less than an hour. Many of the simula-
tions produce similar linear mesoscale features.
[35] There is even larger‐scale organization in a few

instances. This is illustrated in Figure 6. In the case of F16
(Figure 6a) for a point where the large‐scale forcing is
locally maximized, the band of organized convection spans
the entire width of the domain and moves as a cohesive unit
from north to south. It is likely that the presence of this
feature is the reason for the slightly broadened precipitation
peak that immediately follows this point in the simulation.
In the snapshot of theF120 simulation (Figure 6b), there is
another large band of organized precipitation/convection in

the northeast section of the domain. The feature is over
150 km from east to west, and is preceded by an outflow
boundary as shown in F24 (Figure 5). Some simulations
produce rotating convective systems (not shown).
4.2.2. Composite Analysis: Full Domain
[36] For the 15 realizations in each case, the results are

averaged and the standard deviation across the realizations
is determined. The standard deviation can be interpreted as a
measure of the predictability of the simulated systems. To be
clear, this is the standard deviation across realizations, rather
than the spatial standard deviation at a point in time.
A stochastic parameterization would generate the statistics
corresponding to a particular realization.

Figure 6. As in Figure 5. Snapshots from (a) F16 and (b) F120.

Figure 5. Snapshots and time series from F24.
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Dependence on forcing period

[37] Returning briefly to Figure 6a (right top), we see that
the precipitation appears to lag the forcing slightly and that
there is considerable scatter. The variability in the time
series appears to be much less than that obtained in the two‐
dimensional simulations of X92. This is expected, because
the sample size is much larger in the 3D model. Also, the
greater and more variable composite standard deviation
shown by X92 likely has some contribution from the smaller
ensemble size involved (their 9 realizations versus our 15).
[38] Composites of the realizations for the full domain of

the F02, F08, F16, F30, F60, and F120 simulations are
shown in Figure 7. Compared to the raw time series, the data
in the composite plots are much more smooth, as the vari-
ability around the mean has been averaged out to some
degree. This is shown by the blue stippled region (standard
deviation) bounding the mean. Variability is larger for the
long‐period (F60, F120) simulations, perhaps because more
persistent strong forcing permits the development of heavily
precipitating outliers with self‐perpetuating mesoscale
organization. The standard deviation does not change much
with changes in the period of the forcing, but it does change
with the magnitude of the forcing.
[39] Phase lags between the precipitation and the forcing

are both visually apparent and numerically documented in
each plot of Figure 7. The phase lags were quantified by

finding the lag that maximizes the correlation between the
forcing and the response. Lags occur for two reasons. One is
the delay associated with the presence of mesoscale orga-
nization (X92, Figure 9). This is evidenced by the rapid
onset and more gradual decline of the precipitation rate,
which are characteristic of the life cycles of mesoscale
convective systems [X92; Abdullaev et al., 2009]. Unfor-
tunately, this mesoscale lag is not well captured by the lag
detection method mentioned above. Second, lags occur
when the period of the forcing is close to the convective
adjustment time, which ranges from tens of minutes to a
couple of hours depending on the cloud size [Bechtold et al.,
2008; Yu and Neelin, 1997]. With the shorter periods, the
forcing changes too rapidly for the convection to keep up.
Except for F02, the forcing leads the precipitation by
∼80 min. This is a crude measure of the convective
adjustment time [Xu and Randall, 1998]. As the period of
the forcing increases, the relative lag decreases, while the
absolute lag remains approximately constant.
[40] Again, the existence of a lag does not prevent

parameterization. It simply points to the need for convective
parameterizations to have a memory, or a finite adjustment
time.
[41] Figure 8 shows a similar analysis for cloud fraction.

The cloud fraction is not modulated in the same fashion as

Figure 7. Whole domain composite of surface precipitation rate (mm h−1) for the noted simulations. The
black curve is the composite mean. The blue hash‐filled region bounded by the dot‐dashed lines denotes
the ±1 standard deviation across 15 realizations. The red curve references the timing and relative magni-
tude (0%–100%) of the large‐scale forcing; no specific values are implied.
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Dependence on forcing period
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Dependence on domain size

from X92 for comparison, it would be difficult to make the
case for the influence of the mesoscale on the modulation of
the convection.
4.2.3. Composite Analysis: Subdomains
[50] To determine how the statistics vary with domain

size, a subsampling technique was employed. The full
domain size of (256 km)2 was broken down into fractions of
one half (rectangular, not square), one quarter, one six-
teenth, one 64th, and one 256th. This allows for statistics
corresponding to a total of six GCM horizontal grid spa-

cings, namely 256, ∼181, 128, 64, 32, and 16 km. The goal
is to see the effects of changing a GCM’s grid spacing from
O(100 km) to O(10 km). We want to determine at which
resolution the assumptions of QE tend to break down and to
characterize how this occurs.
[51] In the composite analysis, the mean of a quantity is

calculated for each individual subdomain at each time. In
the case of the 256th subdomain size (16 km)2, there are
256 time series of 15 cycles, similar to the full domain
composite analysis. The standard deviation over realizations

Figure 12. As in Figure 7 but for the domain mean mesoscale vertical eddy flux.

Figure 13. As in Figure 7 but for noted subdomains of the F30 simulation. The mean curve shown here
is the same in each plot and corresponds to Figure 7 (bottom left).
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Dependence on domain size
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Forcing period 30 hours
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Three Ways to Use Cloud-Resolving Models 
To Improve Global Models

• Test parameterizations 
and suggest ideas

• Replace parameterizations

• Become the global model



What should a cumulus parameterization do?

Remove grid-scale convective instability

Transport energy etc. by updrafts

Interact with stratiform clouds

Transport energy etc. by downdrafts

Include realistic microphysical processes

Include turbulent processes such as entrainment

Interact with the boundary layer

Interact with the mean wind, through momentum 
transport and mesoscale organization

Produce aggregation

Remember its own recent past history

Behave chaotically

Work for any grid spacing

Provide explanatory power


