Whistlestop Tour: Land-Surface Modeling & the Global Carbon Cycle

Scott Denning Atmospheric Science Colorado State University

Energy Budget Concept

- Energy In Energy Out = Change in Energy
- For the land surface,
 - Energy in = Radiation
 - Energy Out = Radiation + Turbulent fluxes of "sensible" and "latent" heat
 - Change in energy = changes in temperature of soil, plants, water, & air

Land Surface Energy Budget

- Very little of the energy gained by net radiation is stored in the ground (G)
- Most is emitted as LW IR and turbulent fluxes of sensible (H) and latent heat (LE)
- Latent energy is then released into atmosphere when vapor condenses

Surface Energy Budget

Storage change = Energy in – energy out

 $\rho c \frac{\Delta T}{\Delta t} \Delta z = (S \downarrow -S \uparrow +L \downarrow -L \uparrow) - H + \lambda E = G$

heat

flux

Role of the land surface:

Partition of net radiation into turbulent fluxes & storage

Surface Energy Budgets

- R_{net} = H + LE + G ~ H + LE
- Daytime turbulent fluxes upward
- Night: turbulent fluxes downward (dew or frost!)
- Dry surfaces
 R_{net} ~ H
- Wet surfaces
 R_{net} ~ LE

- Sensible heat flux
 - Driving potential is a difference in temperature
 - **H** is proportional to ΔT
- Latent heat flux
 - Driving potential is a difference in vapor pressure
 - LE is proportional to Δe

Sensible Heat Flux

- Driving potential is a difference in temperature
- **H** is proportional to ΔT

Latent Heat Flux

- Driving potential is a difference in water vapor pressure
- LE is proportional to Δe

Idealized Diurnal Cycle

- R_{net} follows cos(z) during day, negative at night (LW cooling)
- Downward turbulent fluxes at night
- Ground heat flux smaller: downward durng day and up at night


```
R_{net} = H + LE + G
~ H + LE
```

Partition of Net Radiation

Ground heat flux $G = k(T_s - T_g)/\Delta z$ $R_{net} = (S \downarrow -S \uparrow) + (L \downarrow -L \uparrow) = H + \lambda E + G$ $H = -\rho C_p \frac{(T_a - T_s)}{1 - 1}$ Latent flux driven by VPD *Sensible flux* $\lambda E = -\frac{\rho C_p \left(e_a - e_*[T_s]\right)}{\left(e_a - e_*[T_s]\right)}$ driven by ΔT $\gamma = (C_p P)/(0.622\lambda)$ 66.5 Pa °C⁻¹ "Psychrometric constant"

Surface Energy Budget

Energy in = energy out + storage change

- Can solve for surface temperature
- Physical properties: albedo, emissivity, heat capacity, soil conductivity & temperature
- "Resistances" are properties of the turbulence ... depend sensitively on H!

Penman-Monteith Equation

"Thermodynamic "energy balance"

 $\lambda E = (R_n - G) - H = (R_n - G) + \rho C_p (T_a - T_s) / r_H$

Solve for surface temperature $T_s - T_a = (r_H / \rho C_p)(R_n - G - \lambda E)$

$$e_*[T_s] = e_*[T_a] + s(T_s - T_a)$$

VPD approximated by linearization of Clausius-Clapeyron equation

Solutions to P-M Equation

Latent heat flux

$$\lambda E = \frac{s(R_n - G) + \rho C_p(e_*[T_a] - e_a)/r_H}{s + \gamma(r_W/r_H)}$$

Sensible heat flux

$$H = \frac{(R_n - G)\gamma^* - \rho C_p (e_*[T_a] - e_a)/r_H}{s + \gamma^*}$$

Surface temperature

$$T_s = T_a + \frac{(R_n - G)\gamma^* r_H / \rho C_p - (e_*[T_a] - e_a)}{s + \gamma^*}$$

Leaf Anatomy

Stomatal Physiology

 Heat, water, and carbon fluxes are coupled by physiology

Scaling to canopy and landscape fluxes based on resource allocation

Carbon and Water

- Plants eat CO₂ for a living
- They open their stomata to let CO₂ in
- Water gets out as an (unfortunate?) consequence
- For every CO₂ molecule fixed about 400 H₂O molecules are lost

Canopy Conductance, c. 1990 $g_s = g_{s,max} f_1(T) f_2(vpd) f_3(PAR)$

λ

BATS, Dickinson et al, 1986

$$E = \beta \left[\frac{e^*(T_s) - e_r}{r_a + r_c} \right] \frac{\rho c_p}{\gamma}$$

- Maximum conductance scaled down by empirically-derived factors
- Assumed independence of limitations

Ball-Berry Relationship

- Stomatal conductance is linear w/ an index that reflects plants physiological strategy
- Light, vpd, leaf temperature effects all collapse among multiple different species

onotosynthesis

leaf surface

 CO_2 at

Photosynthesis and Conductance

Stomatal conductance is linearly related to photosynthesis:

(The "Ball-Berry-Collatz" parameterization)

Photosynthesis is controlled by three limitations (The Farquahar-Berry model):

$$A_{n} = \min(A_{C}, A_{L}, A_{S}) - R_{d}$$

Enzyme kinetics
("rubisco") Light Starch

Canopy Integration

- Photosynthesis and transpiration are linked via stomatal conductance
- Mechanistic understanding of biophysics for leaf-level fluxes
- How to integrate to entire canopy?
 - Could multiply fluxes (mol m⁻² s⁻¹) at leaf level by total leaf-area index
 - That would assume all leaves have same properties and physical environment
 - What about shading inside canopy?
 - How does a plant respond to shading over time?

to Boldy Go

- How to efficiently integrate leaf-level equations across all leaf angles and light levels?
- Assume light levels drop off inside canopy according to **Beer's Law**
- Maximum photosynthesis rate (V_{max}) depends on Rubisco, an enzyme used to catalyze C fixation
- Rubisco is mostly nitrogen (most abundant protein on Earth)
- Assume plant allocates scarce N where it will yield the most C gain (following timemean light!)

Canopy scaling factor II ~ FPAR ... get by remote sensing

C₃ and C₄ Photosynthesis

- Most plants produce sugars by the pathway outlined above, in which the first organic compounds have three carbon atoms (C₃)
- Some tropical and subtropical plants have evolved a separate mechanism in which the first products have four carbon atoms (C₄)
- C₄ photosynthesis is a mechanism to overcome photorespiration (high O₂/CO₂ ratio, high T)
- Involves active transport of dissolved CO₂ to specialized "bundle-sheath" cells to overwhelm O₂ at Rubisco active sites
- Uses energy to do this ... only "pays off" when photorespiration is a big problem
- Evolved only ~ 10 My ago, when CO₂ levels dropped

C₃ vs C₄ Differences

Physiology

 CO_2

PGA

Cз

C4

bundle sheath

Biochemistry

Cascading Carbon Pools

- Plants grow logistically limited by nutrients
- Carbon from dead
 plants becomes litter
- Litter decomposes quickly into fast and then slow soil organic matter

*Q*¹⁰ http://biocycle.atmos.colostate.edu/shiny/Land/

Carbonation

- CO₂ dissolves in water to make carbonic acid
- That's why beer goes with pizza and Chardonnay goes with Brie
- Dissolves twice as well in cold water as warm water
- That's why beer & soda go flat when they warm up
- Cold polar ocean soaks up CO₂, warm tropical oceans release it

Carbonate Equilibria

Three equations (equilibria) in five unknowns

 $CO_2(gas) \leftrightarrow CO_2(dissolved) \quad [CO_2(aq)] = K_0 p CO_2 \qquad 6.1$

 $[\operatorname{CO}_2(\operatorname{aq})] + \operatorname{H}_2\operatorname{O} \longleftrightarrow [\operatorname{H}^+] + [\operatorname{HCO}_3^-] \quad K_1 = [\operatorname{H}^+][\operatorname{HCO}_3^-]/[\operatorname{CO}_2(\operatorname{aq})] \quad 6.6$

 $[\text{HCO}_3^-] \longleftrightarrow [\text{H}^+] + [\text{CO}_3^{2-}] \qquad K_2 = [\text{H}^+][\text{CO}_3^{2-}]/[\text{HCO}_3^-] \qquad 6.7$

Add two more constraints $TA = [HCO_3^{-}] + 2[CO_3^{2^{-}}] + [B(OH)_4^{-}] \qquad (``Titration Alkalinity'') + [NO_3^{-}] + [OH^{-}] - [H^{+}] \pm minor species$

 $B(OH)_{3} + H_{2}O \leftrightarrow H^{+} + B(OH)_{4}^{-}, \quad K_{b} = [H^{+}][B(OH)_{4}^{-}]/[B(OH)_{3}]$ (Boric acid dissociation)

 $\Sigma B = 1.179 \times 10^{-5} \text{S mol/kg}$ (S = Salinity)

Buffering of Marine DIC

Only a small fraction of DIC (CO_2^*) is in chemical equilibrium with atmospheric CO_2

Williams_Fig. 2.20

- CO₂ is highly soluble in cold high-lat waters
- Transported to deep ocean by convection and isopycnal mixing
 - Dynamically-driven equatorial upwelling brings high-CO₂ water to surface
 - Atmospheric transport closes the loop

Nutrient Cycling and the Marine Biological Pump

perturbed by wind

Marine Ecosystem Model

Insolation

- Predict PZND, plus Chlorophyll
- Assume a single limiting "currency" (e.g., N) in each pool
- No interactions among individuals, just "pools"
- More recent models (red) include limitation by multiple nutrients, N-fixation, and size classes of organisms

Dark and Deep

 Brightly colored equipment, fish, and corals at snorkel depths (10 – 20 feet)

 Red and orange go first, then yellow and green

 Below 50 feet, everything is progressively dimmer shades of blue

But the oceans are 13,000 feet deep!

really cold too!

- Warm buoyant "raft" floats at surface
- Cold deep water is only "formed" at high latitudes
- Very stable, hard to mix, takes ~ 1000 years!
- Icy cold, inky black, most of the ocean doesn't know we're here yet!

Observing the Deep Ocean

Observing the Deep Ocean

Global Ocean Survey Samples

Dissolved Fossil CO₂

 Millions of direct measurements of dissolved CO₂ in the oceans

 Fossil CO₂ remains trapped near the surface where warm water floats

 Deep water doesn't know we're here yet!

Planetary Titration

Where Has All the Carbon Gone?

- Into the oceans
 - Solubility pump (CO₂ very soluble in cold water, but rates are limited by slow physical mixing)
 - Biological pump (slow "rain" of organic debris)
- Into the land
 - CO₂ Fertilization
 (plants eat CO2 ... is more better?)
 - Nutrient fertilization (N-deposition and fertilizers)
 - Land-use change (forest regrowth, fire suppression, woody encroachment ... but what about Wal-Marts?)
 - Response to changing climate (e.g., Boreal warming)

Land

Sink Saturation

- Land very vulnerable, very uncertain!
 - Only CO₂ fertilization has "legs"
 - N-deposition and Regrowth are transient
 - Boreal warming may switch to a huge source!
- Ocean slow & safe for near-term, scary for the long term
 - Limited by rate of physical mixing into deep ocean against buoyancy
 - As surface water warms, mixing will slow
 - Thousands of years to reach equilibrium!
 - Acidification chemistry limits total uptake

For Our Whole Lives

- CO2 has been increasing
- Growth has exceeded decomposition
- What will happen as emissions fall and CO2 stabilizes or decreases?

Emissions and their Partitioning since 1850 50 Fossil Emissions (E_{FOS}) 40 Net Land-use Change Emissions (ELUC) Atmospheric Growth (G_{ATM}) Land Sink (SLAND) 30 Ocean Sink (SOCEAN) 20 O₂ Flux (GtCO₂ yr⁻ 10 -10onthly mean CO₂ concentra auga Los 1958 - 2023 1950 2000 00 Year

Simple Conceptual Model

• Preindustrial equilibrium: Historically, there were no carbon sinks

Simple Conceptual Model

- Preindustrial equilibrium: Historically, there were no carbon sinks
- As atmospheric CO2
 increased, carbon flowed
 into the surface ocean and
 land ecosystems

Simple Conceptual Model

- Preindustrial equilibrium: Historically, there were no carbon sinks
- As atmospheric CO2
 increased, carbon flowed
 into the surface ocean and
 land ecosystems
- As emissions slow and cease, ΔpCO_2 will fall
- If/when emissions reverse, so will the sinks

Transient Climate Response to Emissions

Cumulative CO₂ emissions

Implications of TCRE

- Every kg of carbon ever burned in all of history warms climate by the same amount
- When emissions stop, warming will stop almost immediately
- Warming is essentially permanent (without negative emissions)
- Negative emissions will only be about 50% effective

One-Way Warming

- Heating continues
 until we stop
 burning carbon
- After we stop burning coal, oil, & gas the CO₂ will stay in the air
- Climate will remain hot for thousands of years

Thermostat only turns one way!

The Long Tail

The millennial atmospheric lifetime of anthropogenic CO₂

Some of the CO_2 we emit today will still be warming the climate 100,000 years from now!

David Archer • Victor Brovkin