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The tendency of the average of a conservative variable h  due to a vertical eddy flux is 
given by

 

ρ
∂h
∂t
∼ −

∂
∂z

ρ ′w ′h( ) .

(1)

In this note, we consider two different  forms of the vertical eddy  flux, and the relationship 
between them.

A diffusive vertical flux of a conservative variable h  satisfies

ρ ′w ′h = −K ∂h
∂z

,

(2)

where K  is a non-negative diffusion coefficient. For positive K , the flux given by (2) is down-
gradient. With the use of (2), Eq. (1) becomes parabolic:

 

ρ
∂h
∂t
∼
∂
∂z

K ∂h
∂z

⎛

⎝⎜
⎞

⎠⎟
.

(3)

In contrast, for a single cloud type the tendency of h  due to deep convection is given by

 

ρ
∂h
∂t
∼ Mc

∂h
∂z

+δ hc − h( ) ,

(4)
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where 

 
Mc ≡ ρσ c 1−σ c( ) wc −w!( )

(5)

is the positive convective mass flux, δ  is the detrainment mass flux per unit height, hc is the in-

cloud value of h , σ c  is the fractional area covered by the convective updrafts, and  w!  is the 

environmental vertical velocity (Arakawa and Schubert, 1974). Eq. (4) is hyperbolic. It  applies 
when 

 
σ c ≪1 .

(6)

We will derive a single formula that reduces to either (3) or (4), in the appropriate limits. 
The discussion follows Randall et al. (1992) and Lappen and Randall (2001). The starting point 
is the equation that governs the variance of h , i.e.,

ρ
∂ ′h 2

∂t
= −2ρ ′w ′h

∂h
∂z

−
∂
∂z

ρ ′w ′h ′h( )− ρ ′h 2

τ dis
,

(7)

where ′h 2

τ dis
 is the rate at which    ′h 2  is dissipated. In writing (7), we have neglected additional 

terms involving advection by the mean wind, gradient production associated with horizontal 
fluxes, and horizontal transport by triple moments involving the horizontal wind components. 

We now simplify  (7) by neglecting the time-rate-or-change term, and use the mass-flux 
model to rewrite the remaining terms. With the mass flux model, the vertical flux of h  is given 
by

 
ρ ′w ′h = ρσ c 1−σ c( ) wc −w!( ) hc − h"( ) ,

(8)

where  h!  is the environmental value of h , which satisfies

 
h =σ chc + 1−σ c( )h! .

(9) .
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Similarly, the triple moment is given by

 
ρ ′w ′h ′h = ρσ c 1−σ c( ) 1− 2σ c( ) wc −w!( ) hc − h"( )2 .

(10)

Lappen and Randall (2001) showed that, with the mass-flux model, the dissipation term is given 
by

     
ρ
′h 2

τdis

= ε+δ( ) hc−h!( )
2
,

(11)

where    ε≥0  is the rate at which mass is flows from the environment into the updrafts, and    δ≥0  
is the rate at which mass flows from the updrafts into the environment. Both ε  and δ  have 
dimensions of mass per unit volume per unit  time. Conservation of mass for the convective 
updrafts is expressed by

∂
∂z

ρσ cwc( ) = ε −δ .

(12)

Using (8), we can rewrite (10) and (11) as 

ρ ′w ′h ′h = 1− 2σ c( )
ρ ′w ′h( )2
Mc

,

(13)

and

ρ
′h 2

τ dis
= ε +δ( ) ρ ′w ′h

Mc

⎛

⎝⎜
⎞

⎠⎟

2

,

(14)

respectively. Substitution of (13) and (14) into the steady-state (or time-averaged) version of (7) 
gives
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0 = −2ρ ′w ′h
∂h
∂z

−
∂
∂z

1− 2σ c( )
ρ ′w ′h( )2
Mc

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
− ε +δ( ) ρ ′w ′h

Mc

⎛

⎝⎜
⎞

⎠⎟

2

.

(15)

We now examine two limiting cases. For σ c ≡ 1/ 2 , Eq. (15) reduces to

0 = −2 ∂h
∂z

−
ε +δ
M 2

c

⎛
⎝⎜

⎞
⎠⎟
ρ ′w ′h ,

(16)

or

    

ρ ′w ′h =−
2M 2

c

ε+δ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
∂h
∂z

for σ=1/ 2 .

(17)

Eq. (17) has the form of (2), with 

K =
2M 2

c

ε +δ
> 0 .

(18)

Eq. (17) is the diffusive limit of (15). The flux given by (17) is always downgradient.

In the limit σ c → 0 , Eq. (15) can be expanded and simplified to

    
0 =−2Mc

∂h
∂z
−2 ∂
∂z
ρ ′w ′h( )+

ρ ′w ′h
Mc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
∂Mc

∂z
− ε+δ( ) ρ ′w ′h

Mc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
.

(19)

In the same limit, (12) can be written as

∂Mc

∂z
= ε −δ .

(20)

Using (20), Eq. (19) can be further simplified to
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0 =−Mc

∂h
∂z
−
∂
∂z
ρ ′w ′h( )−δ ρ ′w ′h

Mc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
.

(21)

Substitution from (8) gives

    
0 =−Mc

∂h
∂z
−
∂
∂z
ρ ′w ′h( )−δ hc−h( ) ,

(22)

where we have used  h! ≅ h , which is appropriate in the limit σ c → 0 . Finally, (22) can be 

rearranged to

−
∂
∂z

ρ ′w ′h( ) = Mc
∂h
∂z

+δ hc − h( ) for σ → 0 ,

(23)

which is consistent with (1) and (4). A flux that satisfies (23) can be be either upgradient or 
downgradient. 

We have shown that a parameterization based on (15) can produce either (local) diffusion 
or (non-local) penetrative convection, depending on the value of σ c .Wyngaard and Weil (1991) 

obtained a similar result. The diffusive, downgradient flux satisfying (17) applies when 
production is balanced by dissipation, and (1) is parabolic. The (possibly upgradient) flux 
satisfying (23) is obtained when production is balanced by transport, and (1) is hyperbolic.
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