Neural General Circulation Models for Weather & Climate

Dmitrii Kochkov Google Research Colorado State University Atmospheric Science Department 4 November 2024

Neural GCM core contributors & collaborators

Google Research Google DeepMind

NeuralGCM collaborators:

Griffin Mooers, James Lottes, Stephan Rasp, Sam Hatfield, Peter Duben, Milan Klower, Peter Battaglia, Alvaro Sanchez-Gonzalez, Matthew Willson, Michael Brenner

	•
	·····
÷	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting
 - b. "Climate" simulations
- 5. Future directions

.

	•
	· · · · · · · · · · · · · · · · · · ·
÷	
•	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting
 - b. "Climate" simulations
- 5. Future directions

Simulation of weather and climate

Forecast workflow: Data assimilation; Forward model of the Earth system; Post-processing

"Forecasting" queries vary in timescales:

- Will it rain in 3 hours?
- What's the weather in 3 days?
- What is return time of a class 5 hurricane?
- How warm the Earth may be in 30 years if "*"?

Initial condition

[nowcasting, medium range, ...]

Boundary condition

climate variability, catastrophe risks

How do traditional General Circulation Models work?

"Dynamical core" $\frac{d\mathbf{u}}{dt} + f\mathbf{k} \times \mathbf{u} + \frac{1}{\rho} \nabla_z p = \mathbf{0}$ $\frac{\partial \rho}{\partial t} + \nabla_z \cdot (\rho \mathbf{u}) + \frac{\partial \rho w}{\partial z} = 0$ $\frac{dT}{dt} - \frac{\omega}{c_p \,\rho} = 0$ $\frac{\partial p}{\partial z} = -\rho g$ $p = \rho R T$

Fluid dynamics on the surface of a rotating sphere

How do traditional General Circulation Models work?

How do traditional General Circulation Models work?

Success and scaling of GCMs for weather and climate

REVIEW

doi:10.1038/nature14956

The quiet revolution of numerical weather prediction

Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

COMMENTARY:

Climate goals and computing the future of clouds

Bauer et al (2015)

Success and scaling of GCMs for weather and climate

REVIEW

doi:10.1038/nature14956

The quiet revolution of numerical weather prediction

Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

COMMENTARY:

Climate goals and computing the future of clouds

Bauer et al (2015)

.

	•
	·····
	• • •
•	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting
 - b. "Climate" simulations
- 5. Future directions

Pure ML models for weather forecasting

Input weather state

Predicted next state

Recent disruptive results in medium-range weather forecasting

E.g., (GraphCast) Lam & Sanchez-Gonzalez et al. 2022, (Pangu weather) Bi & Xie et al. (2022) (GenCast) Price & Sanchez-Gonzalez et al. 2024, (AIFS) Lang & Alexe et al. 2024

Many Al weather forecasts are skillful, but not yet fully physically realistic

DAY: 00 **HOUR:** 00

Desiderata: achieve good scores for good reasons

DAY: 00 **HOUR:** 00

NeuralGCM

GraphCast

.

	•
•	·····

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting
 - b. "Climate" simulations
- 5. Future directions

Hybrid modeling may offer the best of both worlds

Pure ML

GraphCast Pangu-Weather

Hybrid models

NeuralGCM

Physics-based

Traditional NWP Climate models

Hybrid modeling may offer the best of both worlds

Pure ML

Hybrid models

NeuralGCM

Physics-based

GraphCast Pangu-Weather Traditional NWP Climate models

Very little code Based on data Optimized for forecast accuracy

Hybrid modeling may offer the best of both worlds

Pure ML

Hybrid models

NeuralGCM

Physics-based

GraphCast Pangu-Weather GCM

Traditional NWP Climate models

Very little code Based on data Optimized for forecast accuracy Complex, but interpretable Based on physics Designed to generalize

Traditional GCM modeling principle

Neural GCM modeling principle

Trained end-to-end through 10-1000 of time steps (~3 simulation days)

Features & hypotheses:

- Learns mechanistic "Physics" to drive the "Dynamics"
- Accounts for feedbacks between dynamics & parameterizations

Our dynamical core solves the moist primitive equations with spectral methods

Written in JAX and runs fast on GPUs and Google TPUs

Up to 16x model parallelism

Neural GCM model overview

Model trained to minimize discrepancies between Outputs and ERA5 data

.

	•
-	

· · · · · · · · · · · · · · · · · · ·	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model

4. Neural GCM results

- a. Weather forecasting
- b. "Climate" simulations
- 5. Future directions

NeuralGCM achieves state-of-the-art results both for weather forecasting and climate simulation

(1) Competitive 1-15 day ensemble weather forecasts with ECMWF

(2) Realistic **year-to-decades runs**, competitive with atmosphere only (AMIP) climate models

Weather "Turing test": which one is ERA5?

Weather "Turing test": which one is ERA5?

Weather "Turing test": which one is ERA5?

Precipitation climate "Turing test": which one is ERA5?

From NeuralGCM trained on combined ERA5 & IMERG data

Precipitation climate "Turing test": which one is ERA5?

From NeuralGCM trained on combined ERA5 & IMERG data

.

	•
	·····
÷	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results

a. Weather forecasting

- b. "Climate" simulations
- 5. Future directions

Evaluation of weather forecasts

Setup:

- 1. Models trained using historical data until 2020
- 2. Evaluate 7-15 day forecasts issued for 2020 initialized every 12h

Competing approaches:

- Operational physics models
 - ECMWF HRES
 - ECMWF ENS

- ML models
 - GraphCast
 - Pangu

WeatherBench 2

Stephan Rasp et al github.com/google-research/ weatherbench2

Criteria, driving questions and (metrics):

- 1. Forecast accuracy Does the forecast track weather patterns accurately? (RMSE, CRPS)
- 2. Physical consistency Does it look like weather? (spectral density, biases)

RMSE and CRPS scores

When minimized, one expects similar deviations between the ensemble members (Y, Y') and the ground truth.

 $CRPS = \frac{1}{n} \sum_{i=1}^{n} (|Y_i - \hat{Y}_i| - \frac{1}{2}|Y_i - Y'_i|)$

Accuracy: RMSE scores

- At short times NeuralGCM-0.7° and GraphCast achieve lowest errors
- At 5-7 days ensemble mean of NeuralGCM-ENS and ECMWF-ENS perform best

Accuracy: CRPS scores

 NeuralGCM-ENS slightly outperforms ECMWF-ENS in Continuous Rank Probability Score CRPS is the training objective

Consistency: Spectral density and RMSB

Spectral density Evaluates sharpness and stationarity

Bias RMSE

Evaluates persistent error accumulation

Consistency: bias and spread-skill spatial distributions

Consistency: water budget from model architecture

2020-01-04 (diagnosed)

NeuralGCM At 3 day lead time

"Dynamics" + "Physics" separation enables us to directly diagnose changes in moisture (precipitation - evaporation)

0 minus E [mm/day]

- 50

0

Case study: Ensemble of tropical cyclone tracks

ECMWF ensemble

NeuralGCM ensemble

+5 day forecasts of 2020's Hurricane Laura

.

	•
•	·····

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting

b. "Climate" simulations

5. Future directions

Emergent long-term behaviors in Neural GCM

Evaluation of climate simulations

Setup:

- 1. Models trained on historical data until 2017
- 2. 2-year simulations initialized throughout 2019 use 1.4° (140 km) NeuralGCM
- 3. 40-year run initialized in 1980 use 2.8° (280 km) NeuralGCM

Inference is AMIP setup – prescribed historical sea surface temperature

Reference models:

- X-SHiELD state of the art cloud resolving model (3 km resolution)
- CESM state of the art climate model
- Climatology predict average climate

Desiderata:

- 1. Climate-like variability
- 2. No significant climate drift or bias

NeuralGCM runs fast on modern hardware

This is largely the consequence of reduced resolution

Neural GCM captures near-term climate in 1+ year forecasts

NeuralGCM reproduces near-term climate more accurately than global storm resolving models

Neural GCM generates realistic tropical cyclones

— Ground truth (ERA5) — NeuralGCM

Instability and climate drift can occur in decadal predictions

Some NeuralGCM models are stable for decadal runs

Neural GCM can sometimes capture warming trends with comparable accuracy to CESM

Here NeuralGCM infers global warming signal from the provided ocean temperature

For real world applications one would need to incorporate CO², other gas species and run coupled land-ocean-atmosphere simulations

	•
	•••••
-	

Google Research

Outline

- 1. General Circulation Models (GCMs) for weather and climate
- 2. Al revolution for weather forecasting
- 3. Neural GCM differentiable hybrid atmospheric model
- 4. Neural GCM results
 - a. Weather forecasting
 - b. "Climate" simulations
- 5. Future directions

Full Earth System modeling system vision

- Provide high quality nowcast everywhere
- Predict severe weather days ahead of time
- Help plan & prepare for seasonal changes
- Understand & adapt to warming climate

Initial condition

[nowcasting, medium range, ...]

Boundary condition

climate variability, catastrophe risks

Current focus: Coupled components & Observation data

Coupled modeling

Learning from observations

Open source code

NeuralGCM

Promising results on data-driven ocean emulation & work towards coupled models

Improved precipitation modeling by training on IMERG data

Updating code to support new research on weather & climate (DA, DS, coupled models)

We hope to provide meaningful insights via S2S forecasting and quantitative climate variability estimates

Near term Earth System Modeling goals

Summary

NeuralGCM is an open, fast efficient model that generates realistic ensembles of weather forecasts and features relevant emergent phenomena at longer time integrations

We are hoping to increase the breadth of AI-for-climate research and enable larger community to improve upon our models

Thanks to the Neural GCMs core team and collaborators:

NeuralGCM collaborators:

Peter Norgaard, Jamie Smith, Griffin Mooers, James Lottes, Stephan Rasp, Sam Hatfield, Peter Duben, Milan Klower, Peter Battaglia, Alvaro Sanchez-Gonzalez, Matthew Willson, Michael Brenner