Gravity Wave Parameterizations in Earth system models

Jadwiga (Yaga) Richter

October 22, 2024

- I. Introduction and basic equations
- II. Representations in models
- III.Gravity wave tuning in models
- IV.Effects on key science questions

Introduction and Basic Equations

Gravity Waves (GWs): waves in Earth's atmosphere for which buoyancy is the restoring force.

In water: on boundary of a denser fluid (water) and air above

Atmosphere: continuously stratified -> propagation in vertical and horizontal

GW Sources: any process that produces perturbations of air parcels

Primary Sources: Orography, Convection (including TCs), Fronts

Other: polar vortex edge, secondary wave generation (from wave breaking)

Basic characteristics:

Horizontal wavelengths: 10's to 100's km

Vertical wavelengths: 3 to 30 km

Periods: 10 min to hours

Why do GW's matter?

- GW propagate upwards
- Amplitude grows exponentially with height (wave energy flux is conserved - air density decreases with altitude)
- They deposit momentum when they encounter critical levels or break

Shading: Vertical velocity (m/s)

3D simulation of convectively generated gravity waves using the Complex Geometry Compressible Atmospheric Model (CGCAM) [\[Felton and Lund \(2006\)\].](https://www.sciencedirect.com/science/article/pii/S0021999105004997?via%3Dihub) Latent heating is used as a proxy for convection.

https://www2.cgd.ucar.edu/staff/jrichter/animations.html *Animations: Christopher Heale*

GW characteristics are governed by a **'dispersion relationship'**: relates frequency (period), horizontal and vertical wavenumbers (wavelengths)

Linearized Boussinesq equations: ->

$$
\omega^{*2} = (\omega - Uk)^2 = \frac{N^2k^2}{(k^2+m^2)}.
$$

- ω^* Intrinsic frequency
- Frequency relative to the ground ω
- $k = 2\pi/\lambda_x$ horizontal wavenumber
- $m = 2\pi/\lambda_z$ vertical wavenumber

$$
N^2 = \frac{g}{\theta} \frac{\partial \theta}{\partial z}
$$

buoyancy frequency

Key wave properties: horizontal phase speed, group velocity

$$
\omega^{*2} = (\omega - Uk)^2 = \frac{N^2k^2}{(k^2+m^2)} \qquad \qquad \longrightarrow \qquad m^2 = \frac{k^2(N^2-\omega^{*2})}{\omega^{*2}}
$$

$$
c_{px} = \frac{\omega}{k}
$$

Horizontal wave phase speed: Horizontal intrinsic wave phase speed:

$$
c_{px}^* = \frac{\omega^*}{k} = c_{px} - U = \pm \frac{N}{(k^2 + m^2)^{\frac{1}{2}}}
$$

$$
C_{gx} = c_{gx}^* = \frac{\partial \omega^*}{\partial k} = c_{px}^* \left(1 - \frac{k^2}{k^2 + m^2} \right)
$$

Horizontal Group Velocity:

Vertical Group Velocity: (speed GW energy

$$
c_{gz} = \frac{\partial \omega}{\partial m} = \frac{\omega^*}{m} \left(\frac{m^2}{m^2 + k^2} \right)
$$

Mountain Waves: Linear theory can predict the general features of MWs when the mountain height is small in comparison to the vertical wavelength of the wave.

Small scale ridges, with intrinsic frequency higher than buoyancy frequency:

 $Uk > N \Rightarrow m$ imaginary \Rightarrow exponential decay with height

Flow over wider ridges -> **propagation with height** $f < Uk < N$

Mountains can produce low level blocking and downslope windstorms

- $t = 0.00$ hr an a baile ann 100 $t = 0.00$ hr, $z = 65$ km 900 60 80 56 52 600 48 Zonal Wind (m s⁻¹) 44 Height (km) 300 60 40 y-Distance 36 32 CONSTANT FIELD - VALUE IS 30 O 28 24 40 20 -300 16 12 -600 8 20 $\overline{4}$ Ω -900 1200 -600 -300 300 600 900 Ω $\pmb{0}$ x-Distance 800 -800 -400 400 Distance (km)
- 200-km-wide, 1000-m-high isotropic compact-cosine mountain
- WRF model
- 30 m/s wind $(-5 0 at 24 hrs)$

https://www2.cgd.ucar.edu/staff/jrichter/animations.html

Convectively generated gravity waves:

600

 X (km)

855 855 1500

Pahlavan et al. 2023 (ERA5, 30 km resolution; 50 km vertical velocity)

Horizontal wavelengths: 10's to 100's km Vertical wavelengths: few to 40 km Horizontal phase speeds: up to 100 m/s

505 500

 X (km)

Beres et al. 2002

Convectively generated GWs - mechanisms:

- **1) Thermal or diabatic forcing:** temporal and spatial variations of convective heating produce perturbations that force a spectrum of GWs (Bretherton et al. 1998, Chun and Baik 1998, Pandya and Alexander (1999)
- **2) Mechanical oscillator:** oscillating updrafts and downdrafts perturb the stably stratified atmosphere at and above the top of convective motion (Clark et al. 1986, Fovell et al. 1992)
- **3) Moving mountain:** top of a convective elements acts as a barrier to the background mean flow, producing upstream propagating waves in a manner similar to flow over a mountain (Clark et al. 1986, Pfister et al. 1993)

Frontally generated gravity waves: dominant GW source in mid-latitudes

Gravity wave study based on the idealized baroclinic wave simulations: Weak moist run at 24hr

Yellow: temperature or potential temperature Turquoise: dynamic tropopause (PV = 1.5 PVU) Black: horizontal wind <mark>blue</mark>: horizontal divergence

Frontally generated gravity waves: dominant GW source in mid-latitudes

1) Spontaneous imbalance adjustment (generalization of geostrophic adjustment): GW are generated as imbalance flow comes back to balance

Emission of large amplitude inertia gravity waves in regions of strong horizontal curvature

- **2) Adjustment emission:** well-balance flow continuously radiates GWs during the course of near-balance evolution
- **3) Shear instability:** nonlinear interaction between Kelvin-Helmholtz instability and propagating modes; May occur in very intense shear layers near the surface or at upper levels, above tropopause jets

Waves generated by polar vortex:

12UT on 13 Jan at z=70.km, T:-42.,54.K. U_H at z=70.km, mx(U_H)=111.m/s

Colors: T'; Vectors (mean U, V)

From HIAMCM (Becker & Vadas 2020): high-resolution, whole atmosphere, spectral model, effective resolution ~ 52 km; top at \sim 450 km

Vadas et al. 2024

Secondary wave generation:

- First proposed using theoretical arguments by **Vadas et al. (2002):** Mechanism for the Generation of Secondary Waves in Wave Breaking Regions
- Deep **3D body forces (GW breaking)**, which generate secondary waves very efficiently, create high-frequency waves with large vertical wavelengths that possess large momentum fluxes.

Primary and Secondary Gravity Waves and Large-Scale Wind Changes Generated by the Tonga Volcanic Eruption on 15 January 2022: Modeling and Comparison With **ICON-MIGHTI Winds**

Sharon L. Vadas¹ **.** Erich Becker¹ **.** Cosme Figueiredo² **.** Katrina Bossert³ **.** Brian J. Harding⁴ **.**

Secondary waves generated: a continuum of medium to largescale secondary GWs with *τr* ∼ 20 min to 7 hr, *λH* ∼ 400–7,500 km, *cH* ∼ 100–600 m/s, and *u*′, *v*′ ∼ 100–200 m/s.

GW propagation and dissipation:

 $m^2 = \frac{k^2(N^2 - \omega^{*2})}{\omega^{*2}}$

GW momentum flux: constant with height (till wave breaks/dissipates)

$$
\bar{\rho}u'w'
$$

density decreases -> amplitude increases

$$
GWD = \frac{1}{\overline{\rho}} \frac{\partial}{\partial z} (\overline{\rho} \overline{u'w'}, \overline{\rho} \overline{v'w'})
$$

is the background atmospheric density, u' , v' , and w'are the horizontal and vertical velocity perturbations

$$
GWD = \frac{1}{\overline{\rho}} \frac{\partial}{\partial z} (\overline{\rho} \overline{u'w'}, \overline{\rho} \overline{v'w'})
$$

is the background atmospheric density, u' , v' , and w'are the horizontal and vertical velocity perturbations

- **Need for GWs:** recognition that there was a 'missing drag' in middle atmosphere GCMs
- Without drag, stratospheric winter jet would be much stronger, and mesopause would not be warm
- **Early GCMs, used Rayleigh friction (e.g.: Boville 1986)**
- **First implementation of GWs:** orographic parameterizations (Boer et al. 1984, **Palmer et al 1986, McFarlane 1987**)
- **Non-orographic:** (Rind et al. 1988, Fritts and Lu 1993,

Medvedev and Klaasen 1995, **Hines 1997a,b, Alexander and Dunkerton, 1999,** Warner and McIntyre 2001)

Byron Boville

"Garbage In. Garbage Out.

It's as simple as that"

GW parameterization components:

1) Specification of waves at **source level**: wavenumbers, phase speeds, propagation direction, source height

2) **Wave propagation with height:** typically in column and instant!

(Except for Amemiya and Sato (2010), and Eckermann et al. 2015)

3) **Wave dissipation** -> momentum deposition to the mean flow; Plane wave assumption: Flux and force along same direction as at source; Force applied to the vector momentum equations

Orographic Parameterizations: Non-orographic Parameterizations:

Wave dissipation:

Foundation: **Lindzen's (1981)** saturation theory; mods by Holton (1982)

Assumption:

parameterized waves are individual, steady, monochromatic plane waves

When > 1 : linary theory \rightarrow static instability

Lindzen scheme: Keep amplitude at or below 1

if $\hat{u} > 1$ -> MF is reduced till $\hat{u} = 1$

d MF/dz -> force to the mean flow

Other parameterizations:

- Alexander and Dunkerton (1999): discrete spectrum of monochromatic waves **deposition of all momentum flux at breaking level** works with any source spectrum
- **Hines (1997 a,b)**: proposed a **"Doppler Spread"** mechanism -> nonlinear interactions among waves in the spectrum reshape the spectrum with altitude.
- **Warner and McIntyre (2001):** ~ Hines-like spectrum reshaping with altitude (based on shape) + Lindzen's wave reshaping
- Both **Hines and Warner and McIntyre** assume a particular vertical wavenumber spectrum shape

Source parameterizations: Orography

- **First formulations** (and what's still used most of the time): single, monochromatic vertically propagating wave with c=0 (Boer et al. 1984, Palmer et al. 1986, McFarlane 1987)
- Based on **2D theory** assuming hydrostatic, steady, horizontally uniform flow over an obstacle
- Amplitude at source level: based on subgrid-scale orographic variance
- **Surface stress vector:** parallels to and opposite of the mean flow at the lowest level of the model, assuming **isotropic topography (single length scale)**

Source parameterizations: Orography

$$
Froude #: \quad F_r = \frac{v}{N h_m}
$$

- **Lott and Miller (1997)**: incorporated impact of nearsurface nonlinearities (blocking, flow splitting)
- \bullet when h_m exceeds a critical value -> portion of the flow is diverted or blocked
- **Scinocca and McFarlane (2000):** employs two vertically propagating waves - to provide azimuthal distribution (using elliptical barrier model)
- Also includes representation of low-level drag

Fr > 1: linear; upward propagating waves Fr < 1: non-linear flow; blocked flow or diverting around obstacle -> Momentum flux of upward propagating waves is reduced

Turbulent orographic Form Drag:

Typically representing scales < 5 km Drag exerted by hills/mountains through generation of turbulence

Implementation in IFS:

$$
\frac{\partial U}{\partial t} = \frac{\partial}{\partial z} \frac{\tau_x}{\rho} = -C_{\text{tofd}} |\mathbf{U}(z)| U(z),
$$

$$
C_{\text{tofd}} = -\alpha \beta C_{\text{md}} C_{\text{coor}} 2.109 e^{-(z/1500)^{1.5}} a_2 z^{-1.2}
$$

- **Wood and Mason 1993: represented with an effective** roughness length approach -> enhances roughness proportionally to orographic height
	- **Beljaars et al. 2004: explicitly distributed form drag**

Applies drag explicitly on model levels

with τ_x being the stress, ρ the density, z the height above the surface, $\alpha = 35$, $\beta = 1$, $C_{\text{md}} = 0.005$, $C_{\text{coor}} = 0.6$, $a_2 = a_1 k^{n_1 - n_2}$, $a_1 = \sigma_{\text{fit}}^2 (I_H k_{\text{fit}}^{n_1})^{-1}$, $k_1 = 0.003 \,\text{m}^{-1}$, $n_1 = -1.9$, $n_2 = -2.8$, $k_{\text{fit}} = 0.00035 \,\text{m}^{-1}$, $I_h = 0.00102 \text{ m}^{-1}$ and σ_{fit} is the standard deviation of filtered subgrid orography (to remove scales larger than 5 km). A corresponding equation is used for the meridional wind V . For numerical stability, these

Kanehama et al. 2022 (ECMWF Technical note)

Towards a more "scale-aware" orographic gravity wave drag parametrization: Description and initial testing

A. van Niekerk[®] | S.B. Vosper

Received: 29 April 2021 Revised: 10 July 2021 Accepted: 13 July 2021 Published on: 17 August 2021

- DOI: 10.1002/qj.4126
	- Uses **linear theory** for hydrostatic GWs
	- **Fourier description of subgrid orography** -> produces a MF vector that accounts for anisotropy of the topography; eliminates monochromatic assumption (computed from 1-km source orography dataset offline)
	- Also accounts for **flow-blocking**
	- Better behaved for model grid spacing from 32 to 2 km
	- Parameterized GW fluxes increase with coarser resolution
	- as resolved GW MF decrease)
	- **Total momentum flux is the same**

Non-orographic gravity waves:

- Typically all lumped together
- Source specified somewhere in the troposphere
- Emitted with the same properties at all times
- Sometimes a latitudinal dependence is specified

Source parameterizations: Convective gravity waves

- **First non-orographic source spectrum parameterization: Rind et al. (1988):** convection and wind shear: used in **NASA GISS** model
- Convective GW MF related to convective mass flux Phase speed: U avg over convective region +/- 10 m/s; for deeper convection additional waves +/- 20 m/s, 40 m/s
- **Kershaw et al. (1995); Chun and Baik (1988)** parameterization of the obstacle effect;
- Beres et al. 2004: based on linear theory and models: used in CESM, E3SM & now NASA
- Song and Chun (2005): similar to above: more complex U/N structure
- Bushell et al. 2015: UK Model
- Lott and Guez (2013): LMDz model

Beres et al. (2004): based on linear theory, thermal forcing (steady and oscillating component); verified on mesoscale model simulations

$$
\frac{\partial u'}{\partial t} + \overline{U} \frac{\partial u'}{\partial x} + \frac{1}{\rho_0} \frac{\partial p'}{\partial x} = 0,
$$
\n
$$
\frac{\partial w'}{\partial t} + \overline{U} \frac{\partial w'}{\partial x} + \frac{1}{\rho_0} \frac{\partial p'}{\partial z} - g \frac{\theta'}{\theta_0} = 0,
$$
\n
$$
\frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z} = 0,
$$
\n
$$
\frac{g}{\theta_0} \left(\frac{\partial \theta'}{\partial t} + \overline{U} \frac{\partial \theta}{\partial x} \right) + w'N^2 = \frac{g}{\theta_0} J',
$$
\n
$$
q_z(z) = \begin{cases} \sin(\pi z/h) & \text{for } 0 \le z \le h \\ 0 & \text{for } z > h. \end{cases}
$$
\n
$$
q_z(z) = \begin{cases} \sin(\pi z/h) & \text{for } 0 \le z \le h \\ 0 & \text{for } z > h. \end{cases}
$$
\n
$$
\text{Heat source: horizontal scale } 2\sigma_x \text{ vertical scale: } h
$$

Beres et al. 2004:

- GW MF dependent primarily on vertical scale of heating and wind
- Also on horizontal scale and dominant frequency (need to assume)

Frontally/Shear generated waves:

● **Rind et al. (1988)**

Shear-generated GWs: launched at jet stream level; assigned a single wavenumber and phase speed dependent on the direction of the shear and wind velocity in shear layers

Charron and Manzini (2002):

using 'frontogenesis function' to diagnose location of fronts (Miller 1948, Hoskins 1982)

- if the frontogenesis function exceeds a critical threshold -> GWs launched at a fixed level of 600 hPa with high amplitude
- otherwise: small amplitude spectrum

Gravity Wave Tuning

GW parameterizations in CESM: upcoming CAM versions (80 km top) and WACCM (150 km top)

1. Orographic GWs:

McFarlane (1987): 1 wave with $c=0$ Amplitude dependent on orography height & mean wind Tunable parameter: Efficiency **Beljaars et al. (2004)**

2. Frontal GWs:

modified Charron and Manzini (2002):

40 waves with $-100 < c < 100$ m/s LOW Gaussian distribution in phase speed centered at 600 hPa Constant wave amplitude

Tunable parameters: Efficiency, amplitude, phase speed distribution, frontal threshold

3. Convectively generated GWs:

Beres et al. (2004):

40 waves with -100 < c < 100 m/s Dominant c related to h; Amplitude proportional to Q² Tunable parameters: Efficiency, amplitude conversion (assumptions about scale/frequency)

Gravity wave drag in WACCM3.5

Quasi-biennial Oscillation: U (10S to 10N):

Beres et al. (2004) Tunable parameters:

CF: Convective Fraction (tunable)

Eff_{gw} (multiplies the GWD) Eff_{gw} = 0.4

$$
Eff_{gw} = 0.4
$$

CF = 5%

$Eff_{gw} = 0.35$ $CF = 8%$ **GW parameterizations can't fix all deficiencies in the model**

Richter et al. 2019

CESM(WACCM5) tuning:

$$
Eff_{gw} = 0.3
$$

 $Eff_{gw} = 0.6$

Need to get mesopause temperature and height right

Gravity wave tuning in a high-top model:

WACC-M-OLE

 \sim 3 -6 months

"If there was a hell, gravity wave tuning would surely be one of the key activities there", Rolando Garcia

Why does any of this matter?

Effect on Sudden Stratospheric Warmings (SSWs):

Simulations **with turbulent mountain stress** (TMS): SSW freq NDJFM: **0.6** (same as ERAI) Simulations **without TMS**: SSW freq NDJFM: **0.25**

TMS: adds surface drag term

FIG. 14. DJF zonal wind difference: WACCM3.5 WACCM3.5ntms. Contours are \pm (1, 2, 3, 4, 5, 10, 15, 20, 25) m s⁻¹. Light and dark shading represent regions with Student's t-test values at the 95% and 99% levels, respectively.

Revised: 11 October 2019 Accepted: 10 January 2020 Received: 7 March 2019

DOI: 10.1002/qj.3749

Quarterly Journal of the RMetS **Royal Meteorological Society**

SPECIAL SECTION QBO MODELLING INTERCOMPARISON

Response of the Quasi-Biennial Oscillation to a warming climate in global climate models

EXP4: annually-repeating SSTs + 4K, 4 X CO₂

No consistency in how the QBO period will change in future climate; Consistent decrease in QBO amplitude.

Richter et al. 2020, QJRMS

Models with interactive GW sources: Present: Future: Future:

CESM1(WACCM-110L) Exp 2

Wave **amplitude** is related to the **square of convective heating**

Wave amplitude is related to **square of precipitation**, which is converted into heating rate

Wave amplitude is related to the **square root of precipitation** (based on empirical relationship)

Richter et al. 2020, QJRMS

Climate Intervention: How will the QBO respond to injection of aerosols into the stratosphere? (at 60 hPa)

Difference due to tropical w* (partially driven by GWs)

Niemeier, Richter, Tilmes 2020

Conclusions

- Gravity wave parameterizations are still very much needed to simulate the stratosphere and the MLT region correctly in Earth system models
- For models with non-orographic source GW parameterizations, errors from the troposphere will carry up to the middle atmosphere - large uncertainties in formulation still exist
- Not all sources of waves are accounted for
- Lots of room still for improvement especially **need for scale-aware parameterizations**

