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Why	DA	for	Earth	System	Models?

• Improve	S2S	and	climate	predictions,		
• Construct	re-analyses	of	four-dimensional	climate	system	to	increase	scientific	
understanding	(think	ERA5,	the	most	used	data	set	in	the	atmospheric	sciences)	
• Earth	system	model	improvement:	

• estimate	Earth	system	model	parameters	
• estimate	Earth	system	model	parameterizations/missing	physics	(chemistry,	biology,…)	

• Intelligent	monitoring:	where	should	we	measure	what?



Example	of	an	ocean	model:	chaotic	dynamics



The	Global	observing	system	for	weather	prediction



Observation	coverage



Observation	coverage	satellites



y

How	to	connect	observations	to	model	variables?

x

H

The	function	H	is	called	the	observation	operator.



Data	assimilation:	the	basics
Data	assimilation	is	the	science	of	combining	many	sources	of	information:		
from	1)	a	numerical	model	and	2)	many	observations.	

These	sources	have	their	uncertainty,	and	this	uncertainty	is	crucial	when	we	
combine	the	sources	of	information	

The	most	general	way	to	incorporate	uncertainties	is	via	probability	density	
functions.
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Mathematical	description:	probability	density	functions	(pdf)

The	variable	x	can	be	‘anything’:	the	state	of	the	atmosphere,	a	concentration	field,		
sources	and	sinks,	a	trajectory	of	a	concentration	field,	model	parameters,		
or	combinations	of	these.	Or	it	can	be	a	whole	Earth	system	model.



Intermezzo:	conditional	pdf

Conditional	pdf:	

‘The	probability	of	X=x	and	Y=y	is	equal	to	prob	of	X=x	given	Y=y,	times	the	probability	
that	that	event	Y=y	occurs.’

Similarly:

Combine:	

This	is	Bayes	Theorem,	the	basis	of	data	assimilation,	machine	learning,		
any	estimation	problem!



The	solution	is	a	pdf!	
No	inversion!

Bayes	theorem:

Data	assimilation:	general	formulation



The	likelihood
The	likelihood	is	given	by:	

The	observations	are	generated	as	

with														known,	e.g.		

How		do	we	find	an	expression	for	the	likelihood	from	this?	Note	that	x	is	the	active	
variable,	while	the	observations	y	are	given	when	we	do	data	assimilation.	Hence,	the	
likelihood	is	NOT	the	pdf	of	the	observations!	



What	is	the	Likelihood	?	
																			is	the	probability	(density)	that	we	find	observations	y,	given	that	the	model	
state	is	x.	We	can	write		
																		
																																																		or	
				
where	x	and	y	are	known.	Hence,	this	is	equal	to	the	probability	(density)	that	this	
measurement	error	epsilon					appears,	which	is	equal	to												.		We	thus	find,	for	
Gaussian	observation	errors:						
		



Big	Data
• How	big	is	the	nonlinear	data-assimilation	problem?		
• Assume	we	need	10	frequency	bins	for	each	variable	to	build	the	joint	pdf	of	all	
variables.	
• Let’s	assume	we	have	a	modest	model	with	a	million	variables.	
• Then	we	need	to	store	101,000,000	numbers.	
• The	total	number	of	atoms	in	the	universe	is	estimated	to	be	about	1080.	

• So,	the	data-assimilation	problem	is	larger	than	the	universe…	

• And	data	assimilation	becomes	the	art	of	finding	the	best	approximate	method	
for	the	problem	at	hand.



The	Gaussian	assumption

Prior	pdf:	multivariate	Gaussian:

Likelihood:	multivariate	Gaussian



(Ensemble)	Kalman	Filter/Smoother	I

Use	Gaussianity	in	Bayes	Theorem:

Multiplication,	assuming	observation	operator	H	is	linear:

Complete	the	squares	to	find	again	a	Gaussian	(only	for	linear	H	!):



(Ensemble)	Kalman	Filter/Smoother	II

Two	possibilities	to	find	the	expressions	for	the	mean	and	covariance:	
1) Completing	the	squares	
2) Assume	solution	is	linear	combination	of	model	and	observations.	

Both	lead	to	the	Kalman	filter	equations,	which	is	just	the	least	squares	solution	
(best	linear	unbiased	estimator,	BLUE):		

Posterior	mean:	

Posterior	covariance:	

with	Kalman	gain:	



(Ensemble)	Kalman	Filter/Smoother	II

Two	possibilities	to	find	the	expressions	for	the	mean	and	covariance:	
1) Completing	the	squares	
2) Assume	solution	is	linear	combination	of	model	and	observations.	

Both	lead	to	the	Kalman	filter	equations,	which	are	just	the	least	squares	solutions	
(best	linear	unbiased	estimator,	BLUE):		

influence	region weighting innovation



Examples	of	spatial	correlation	of	SSH	
at	X	and	SST	in	the	Indian	Ocean

x

x

Haugen	and	Evensen,	2002

The	model	error	covariance:	

Tells	us	how	model	variables	co-vary.	

In	the	Kalman	filter	this	comes	in	via	the	BHT	term:	

Note,	can	also	do	this	over	time!



Kalman	Filter	in	high-dimensions…

We	need	the	mean	and	the	covariance	for	
the	Kalman	Filter.	

For	numerical	weather	prediction	the	
state	dimension	is	1011:		

That	means	a	covariance	matrix	with	1022	
elements.		

No	computer	today	can	store	that….

Meteorological	
variable	

longitude	
latitude	

vertical	
level	



Ensemble	Kalman	filters	and	smoothers	
Use	ensemble	to	store	and	propagate	the	mean	and	covariance	matrix.

Ensemble	Kalman	Filter:												BHT	=	Xt2	(HXt2)T	

Ensemble	Kalman	Smoother:			BHT	=	Xt1	(HXt2)T	

Many	variants:	SEnKF,	SEnKS,	ETKT,	EAKF,…	
Can	allow	for	weakly	nonlinear	H	via	iterative	variants.

nonlinear	model	evolution

nonlinear	model	evolution



Issues	Ensemble	Kalman	filters/smoothers	
Two	effects	of	finite	sample	size:	
	 -	Underestimation	of	sample	covariance.	
	 -	Spurious	long-range	correlations.	
Fixes:	
	 -	Covariance	inflation	
	 -	Covariance	localization	

Localization:	multiply	with	smooth	correlation	matrix

inflation



A	variational	method	looks	for	the	most	probable	state,	which	is	the	maximum	of	
this	posterior	pdf	also	called	the	mode.	

Instead	of	solving	for	the	maximum,	one	solves	for	the	minimum	of	a	so-called	
costfunction.	

The	posterior	pdf	can	be	rewritten	as	

in	which	J	is	costfunction	or	penalty	function	

in	which	B	has	to	be	determined	from	climatological	physics.	

Find	min	J	from	variational	derivative:																			,		leading	to	3DVar

Variational	methods



Gradient	descent	methods:	e.g.	Gauss-Newton	iterations

J

model	state	xb

123 4 561’



Sequential	data	assimilation
	Two	ingredients:															x(t+1)	=	M(x(t))	+	error.																			y(t)	=	H(x(t))	+	error	

Two	modes	of	data	assimilation:

SmootherFilter



4DVar:	include	the	time	dimension

The	total	costfunction	that	we	must	minimize	now	becomes:

in	which	the	observation	operator	Hi	contains	the	forward	model:		

This	nonlinear	costfunction	is	again	minimized	iteratively.	

4Dvar	has	been	the	workhorse	for	weather	forecasting	for	the	last	20	years.	
(Machine	learning	can	be	seen	as	special	kind	of	4DVar,	with	many	simplifications.)



Popular	data-assimilation	methods
(Iterative)	Ensemble	Kalman	Filters		
• Ensemble	size	typically	too	small,	

need	localization	and	inflation	

Variational	methods		find	mode	of		
posterior	pdf,	Gauss-Newton	iteration	
• Gaussian	prior	with	fixed	prior	

covariance,	H	can	be	weakly	
nonlinear,	obs	errors	Gaussian	

• Hard	to	find	uncertainty	estimate	

‘Hybrid’	methods	e.g.	ECMWF	uses	
ensemble	of	variational	members	

Nonlinear	data-assimilation	methods

Gaussian	DAnonlinear	
propagation

-log	p(x|y)

model	state	x
123 4 5



Atmospheric	state	vector	of	dimension	1011.	
Observation	vector	108	(and	this	is	only	5%	of	all	the	observations).	

					Data	gathering	period	(6	h)																			Data	gathering	period	(6h)	
									Assimilation	window																														Assimilation	window	

Computation:	Model	forecasts		Data	assimilation			Model	forecasts				Data	assimilation	

4DVar	(Gauss-Newton,	first	and	second	level	preconditioning,	prior	covariance	matrix,	
correlated	observation	errors,	representation	errors,	…	)

Weather	Prediction:	4Dvar



Atmospheric	state	vector	of	dimension	1011.	
Observation	vector	106	(?)	.	

					Data	gathering	period	(6	h)																			Data	gathering	period	(6h)	
														Assimilation	every	hour																									Assimilation	every	hour																						

Computation:	Model	forecasts		Data	assimilation			Model	forecasts				Data	assimilation	

EnKF	(Inflation	and	localization	for	prior	covariance	matrix,		uncorrelated	observation	
errors,	representation	errors,	…	)

Weather	Prediction:	EnKF



Ocean-Atmosphere	(coupled)	data	assimilation

Approaches:	

1)	EnKF	separate	

2)	3DVar	separate	

3)	EnKF	whole	system	

4)	4Dvar	whole	system				

Issues:	

1)	Obs	of	system	1	cannot	influence	other	system	directly	

2)	Obs	of	system	1	cannot	influence	other	system	directly	
				Prior	model	covariance?	

3)	Localization	radius?	

4)	Prior	model	covariance?	Time-scale	separation?	



Ocean-Atmosphere	4Dvar	data	assimilation

Solution	strategies:	

1. Separate	4Dvar	in	Atmosphere	and	Ocean	

2. Strongly	coupled	over	12	hour	

3. Strongly	coupled	over	a	few	days	with	’smoothed’	atmosphere	

4. Weakly	coupled:	Exchange	fields	after	each	inner	loop.	

Not	solved,	active	area	of	research.	
																																															



Ocean-Atmosphere	(coupled)	4DVar

Biggest	problem	is	different	operational	time	scales				
																																															
Atmosphere:		
		Data-assimilation	window	6	to	12	hours	

Ocean:		
		Data	assimilation	window	3	days	

Ocean	data	come	in	late,	e.g.	ARGO	buoys	once	every	10	days.



ECMWF	weakly	coupled	Earth	system	DA



ECMWF	weakly	coupled	Earth	system	DA	
sea-ice	concentration	assimilation	a)	uncoupled,	b)	weakly	coupled



Ocean-Atmosphere	(coupled)	data	assimilation

1. Cross	components	effects	are	generally	stronger	in	the	direction	from	the	slow	
to	the	fast	scale,	so	that	observations	of	the	slow	scale	may	benefit	the	fast,	
but,		

2. Intra-component	effects	are	much	stronger	in	the	fast	scale.	The	fast	scale	must	
be	controlled	by	frequently	enough	observations	to	prevent	error	growth	and	
affect	the	slow	scale.	

3. The	coupling	changes	the	Lyapunov	spectrum,	and	it	seems	important	to	also	
control	neutral	and	weakly	stable	modes.	

																																															



Kuramoto-Shivashinsky	coupled	model:	

Domain size of 32 for Atmos and 
256 for Ocean on a 1024 nodes grid. 

𝜖 > 1: ocean evolves on a slower scale than 
the atmosphere. 

Coupled	data	assimilation	in	Ensemble	Filters	

Uncoupled (left) and Coupled (right); 𝜖 = 
1 



Coupled	data	assimilation	

Uncoupled (left) and Coupled (right); 𝜖 = 
1 

Uncoupled (left) and Coupled (right); 𝜖 
= 4 



Correlations,	using	1000	ensemble	members	

Coupled (right); 𝜖 = 
4 

Uncoupled 



Correlations,	using	1000	ensemble	members	

Coupled (right); 𝜖 = 
4 

Uncoupled 



The	best	localization	scale	for	small	ensemble	size?

Vastly different scales…, and how to do cross-system covariances? 



Adaptive	localization
Local analysis updates a gridpoint using only “nearby” observations. 
• Distance-based truncation of “spatially” remote obervations. 
• Correlation-based truncation of “weakly correlated” observations. 

We define a correlation distance as

Truncating when the correlation distance 

Hence: spatial distance becomes irrelevant, only correlation value 
matters.



Adaptive	localization
Root-mean-square errors                                          Ensemble standard 
deviation

Adaptive localization seems the way to go !



Sea-ice	–ocean	and	–atmosphere	data	assimilation
Sea-ice	DA	is	still	in	its	infancy,	EnKF	most	advanced	method,	but	problem	is	highly	
nonlinear:	
1)	sea-ice	boundary	(covariances	can	‘flip’)	

				
fresh	melting	water	
Cov(conc,	S)	>	0

melt	due	to	warm	saline	water	
Cov(conc,	S)	<0

Melting	sea	ice Via	atmosphere

Via	ocean



Sea-ice	–ocean	and	–atmosphere	data	assimilation

2)	sea-ice	concentration	in	[0,1],	so	not	Gaussian	

3)	Sea-ice	thickness	>	0,	so	not	Gaussian	

4)	Equation	of	state	highly	nonlinear	(ridging)	

5)	observational	difficulties	(melt	ponds,	snow	on	ice,	sea-ice	thickness	categories)	
				

sea	level

low-density	ice/snow high-density	ice/snow

sea	level



Atmospheric	chemistry	-	meteorology
• Meteorology	and	atmospheric	chemistry	can	be	highly	coupled.		
• Even	when	influence	of	atmospheric	chemistry	on	meteorology	is	neglected,	the	

relations	between	e.g.	concentration	fields	and	winds	allow	for	updates	in	meteorology.	
• But	coupling	often	highly	nonlinear	

t=0																																																																					t=T

X

X

X

low	wind	correlates		
with	low	concentration

high	wind,		
correlates	with	
low	concentration

medium	wind	correlates	
with	high	concentration



Pdf	of	concentration	at	time	t	and	wind	strength

=	concentration	
			at	time	t

=	Wind	strength	=	transport	error

This	is	highly	
non-Gaussian	!

(see	e.g.	Anderson	2020,	MWR)



Land-atmosphere	DA
Highly	irregular	covariances

https://www.mdpi.com/atmosphere/atmosphere-09-00127/article_deploy/html/images/atmosphere-09-00127-g001.png


Land-atmosphere	DA

https://www.mdpi.com/atmosphere/atmosphere-09-00127/article_deploy/html/images/atmosphere-09-00127-g002.png


Nonlinear	data-assimilation	methods	I
Markov-Chain	Monte-Carlo	methods	
(e.g.	Metropolis-Hastings,	Langevin	
sampling,	Hamiltonian	Monte-Carlo)	
• These	schemes	are	sequential	in	

generating	ensemble	members	
• Only	for	small	(<10)	dimensions	

Particle	Filters/Smoothers		
• Generate	samples	in	parallel,	use	

Importance	sampling.	High-
dimensional	variants	biased.	

• Highly	efficient	schemes	use	
tempering	(iterative	likelihood	
refinement)

Burn	in Actual	samples



Nonlinear	data-assimilation	methods	II

One-step	Optimal	transportation	filters	
• Find	transport	map	between	posterior	

and	reference	(Gaussian)	pdf,	and	
between	prior	and	reference	pdf	

• Use	e.g.	triangular	map	

Particle	Flow	filters/smoothers	
• Flow	in	pseudo	time	
• Stochastic	versions	can	be	made	

unbiased	
• used	in	high-dimensions! 				Before	observations												After	observations	

							‘Prior’																																				‘Posterior’



				Prior	pdf																																																																	Posterior	pdf

Particle	flow	in	pseudo	time

Particle	Flows:	propagation	of	pdf	from	prior	to	posterior

The	prior	and	posterior	can	be	for	a	model	state	(filter)	or	a	model	trajectory	(smoother)	
	or	a	set	of	parameters,	or	a	combination	of	these.



Particle	flow	in	pseudo	time

				Prior	pdf																																																																	Posterior	pdf



Particle	Flow	converged	on	posterior	pdf

				Prior	pdf																																																																	Posterior	pdf
Hu,	C-C,	and	P.J.	van	Leeuwen	(2021)	A	particle	flow	filter	for	fully	nonlinear	high-dimensional	data	assimilation.,		
Q.J.	Royal	Meteorol.	Soc.,		doi:	10.1002/qj.4028

Not	degenerate	by	construction



5-layer	primitive	equation	model	of	the	atmosphere	with	variables	U,	V,	T,	SLP	
28.200	gridpoints	
Assimilation	of	sea-level	pressure	(SLP)	
1)		
2)	

Ensemble	size	25	particles	
Compare	EnKF	and	PFF

Particle	Flow	Filter	on	a	high	dimensional	atmospheric	model



Linear	observation	
operator	with	Gaussian		
observation	errors	

Domain	averaged		
values



Nonlinear	observation	
operator	with	Gaussian		
observation	errors	

Domain	averaged		
values



Conclusions

• Data	assimilation	theory	is	simple,	but	developing	practical	schemes	is	complicated.	
• DA	for	Earth	system	models	in	its	infancy	
• Main	effort	in	coupled	ocean-atmosphere,	which	seems	most	complicated	due	to	size	
of	problem	and	different	time	scales	
• DA	problem	is	be	coming	highly	nonlinear	
• Atmospheric	chemistry	will	be	a	killer…	
• All	agencies	are	in	high	need	of	DA	expertise	
• ML	is	unlikely	to	take	over	soon.



Shameless	plug…

• Free	open	access	book	
• doi:	10.1007/978-3-030-96709-3


