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Why DA for Earth System Models?

• Improve S2S and climate predictions, 	
• Construct re-analyses of four-dimensional climate system to increase scientific 
understanding (think ERA5, the most used data set in the atmospheric sciences)	
• Earth system model improvement:	

• estimate Earth system model parameters	
• estimate Earth system model parameterizations/missing physics (chemistry, biology,…)	

• Intelligent monitoring: where should we measure what?



Example of an ocean model: chaotic dynamics



The Global observing system for weather prediction



Observation coverage



Observation coverage satellites



y

How to connect observations to model variables?

x

H

The function H is called the observation operator.



Data assimilation: the basics
Data assimilation is the science of combining many sources of information: 	
from 1) a numerical model and 2) many observations.	

These sources have their uncertainty, and this uncertainty is crucial when we 
combine the sources of information	

The most general way to incorporate uncertainties is via probability density 
functions.
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Mathematical description: probability density functions (pdf)

The variable x can be ‘anything’: the state of the atmosphere, a concentration field, 	
sources and sinks, a trajectory of a concentration field, model parameters, 	
or combinations of these. Or it can be a whole Earth system model.



Intermezzo: conditional pdf

Conditional pdf:	

‘The probability of X=x and Y=y is equal to prob of X=x given Y=y, times the probability 
that that event Y=y occurs.’

Similarly:

Combine:	

This is Bayes Theorem, the basis of data assimilation, machine learning, 	
any estimation problem!



The solution is a pdf!	
No inversion!

Bayes theorem:

Data assimilation: general formulation



The likelihood
The likelihood is given by:	

The observations are generated as	

with              known, e.g. 	

How  do we find an expression for the likelihood from this? Note that x is the active 
variable, while the observations y are given when we do data assimilation. Hence, the 
likelihood is NOT the pdf of the observations!	



What is the Likelihood ? 
                   is the probability (density) that we find observations y, given that the model 
state is x. We can write 	
                 	
                                                  or	
   	
where x and y are known. Hence, this is equal to the probability (density) that this 
measurement error epsilon     appears, which is equal to            .  We thus find, for 
Gaussian observation errors:     	
 	



Big Data
• How big is the nonlinear data-assimilation problem? 	
• Assume we need 10 frequency bins for each variable to build the joint pdf of all 
variables.	
• Let’s assume we have a modest model with a million variables.	
• Then we need to store 101,000,000 numbers.	
• The total number of atoms in the universe is estimated to be about 1080.	

• So, the data-assimilation problem is larger than the universe…	

• And data assimilation becomes the art of finding the best approximate method 
for the problem at hand.



The Gaussian assumption

Prior pdf: multivariate Gaussian:

Likelihood: multivariate Gaussian



(Ensemble) Kalman Filter/Smoother I

Use Gaussianity in Bayes Theorem:

Multiplication, assuming observation operator H is linear:

Complete the squares to find again a Gaussian (only for linear H !):



(Ensemble) Kalman Filter/Smoother II

Two possibilities to find the expressions for the mean and covariance:	
1) Completing the squares	
2) Assume solution is linear combination of model and observations.	

Both lead to the Kalman filter equations, which is just the least squares solution 
(best linear unbiased estimator, BLUE): 	

Posterior mean:	

Posterior covariance:	

with Kalman gain:	



(Ensemble) Kalman Filter/Smoother II

Two possibilities to find the expressions for the mean and covariance:	
1) Completing the squares	
2) Assume solution is linear combination of model and observations.	

Both lead to the Kalman filter equations, which are just the least squares solutions 
(best linear unbiased estimator, BLUE): 	

influence region weighting innovation



Examples of spatial correlation of SSH 
at X and SST in the Indian Ocean

x

x

Haugen and Evensen, 2002

The model error covariance:	

Tells us how model variables co-vary. 

In the Kalman filter this comes in via the BHT term:	

Note, can also do this over time!



Kalman Filter in high-dimensions…

We need the mean and the covariance for 
the Kalman Filter.	

For numerical weather prediction the 
state dimension is 1011: 	

That means a covariance matrix with 1022 
elements. 	

No computer today can store that….

Meteorological 
variable	

longitude	
latitude	

vertical 
level	



Ensemble Kalman filters and smoothers 
Use ensemble to store and propagate the mean and covariance matrix.

Ensemble Kalman Filter:            BHT = Xt2 (HXt2)T	

Ensemble Kalman Smoother:   BHT = Xt1 (HXt2)T	

Many variants: SEnKF, SEnKS, ETKT, EAKF,…	
Can allow for weakly nonlinear H via iterative variants.

nonlinear model evolution

nonlinear model evolution



Issues Ensemble Kalman filters/smoothers 
Two effects of finite sample size:	
	 - Underestimation of sample covariance.	
	 - Spurious long-range correlations.	
Fixes:	
	 - Covariance inflation	
	 - Covariance localization	

Localization: multiply with smooth correlation matrix

inflation



A variational method looks for the most probable state, which is the maximum of 
this posterior pdf also called the mode.	

Instead of solving for the maximum, one solves for the minimum of a so-called 
costfunction.	

The posterior pdf can be rewritten as	

in which J is costfunction or penalty function	

in which B has to be determined from climatological physics.	

Find min J from variational derivative:                   ,  leading to 3DVar

Variational methods



Gradient descent methods: e.g. Gauss-Newton iterations

J

model state xb

123 4 561’



Sequential data assimilation
 Two ingredients:               x(t+1) = M(x(t)) + error.                   y(t) = H(x(t)) + error	

Two modes of data assimilation:

SmootherFilter



4DVar: include the time dimension

The total costfunction that we must minimize now becomes:

in which the observation operator Hi contains the forward model:  

This nonlinear costfunction is again minimized iteratively.	

4Dvar has been the workhorse for weather forecasting for the last 20 years.	
(Machine learning can be seen as special kind of 4DVar, with many simplifications.)



Popular data-assimilation methods
(Iterative) Ensemble Kalman Filters 	
• Ensemble size typically too small, 

need localization and inflation	

Variational methods  find mode of  
posterior pdf, Gauss-Newton iteration	
• Gaussian prior with fixed prior 

covariance, H can be weakly 
nonlinear, obs errors Gaussian	

• Hard to find uncertainty estimate	

‘Hybrid’ methods e.g. ECMWF uses 
ensemble of variational members	

Nonlinear data-assimilation methods

Gaussian DAnonlinear	
propagation

-log p(x|y)

model state x
123 4 5



Atmospheric state vector of dimension 1011.	
Observation vector 108 (and this is only 5% of all the observations).	

     Data gathering period (6 h)                   Data gathering period (6h)	
         Assimilation window                              Assimilation window	

Computation: Model forecasts  Data assimilation   Model forecasts    Data assimilation	

4DVar (Gauss-Newton, first and second level preconditioning, prior covariance matrix, 
correlated observation errors, representation errors, … )

Weather Prediction: 4Dvar



Atmospheric state vector of dimension 1011.	
Observation vector 106 (?) .	

     Data gathering period (6 h)                   Data gathering period (6h)	
              Assimilation every hour                         Assimilation every hour                     	

Computation: Model forecasts  Data assimilation   Model forecasts    Data assimilation	

EnKF (Inflation and localization for prior covariance matrix,  uncorrelated observation 
errors, representation errors, … )

Weather Prediction: EnKF



Ocean-Atmosphere (coupled) data assimilation

Approaches:	

1) EnKF separate	

2) 3DVar separate	

3) EnKF whole system	

4) 4Dvar whole system   	

Issues:	

1) Obs of system 1 cannot influence other system directly	

2) Obs of system 1 cannot influence other system directly	
    Prior model covariance?	

3) Localization radius?	

4) Prior model covariance? Time-scale separation?	



Ocean-Atmosphere 4Dvar data assimilation

Solution strategies:	

1. Separate 4Dvar in Atmosphere and Ocean	

2. Strongly coupled over 12 hour	

3. Strongly coupled over a few days with ’smoothed’ atmosphere	

4. Weakly coupled: Exchange fields after each inner loop.	

Not solved, active area of research.	
                                              	



Ocean-Atmosphere (coupled) 4DVar

Biggest problem is different operational time scales   	
                                              	
Atmosphere: 	
  Data-assimilation window 6 to 12 hours	

Ocean: 	
  Data assimilation window 3 days	

Ocean data come in late, e.g. ARGO buoys once every 10 days.



ECMWF weakly coupled Earth system DA



ECMWF weakly coupled Earth system DA	
sea-ice concentration assimilation a) uncoupled, b) weakly coupled



Ocean-Atmosphere (coupled) data assimilation

1. Cross components effects are generally stronger in the direction from the slow 
to the fast scale, so that observations of the slow scale may benefit the fast, 
but, 	

2. Intra-component effects are much stronger in the fast scale. The fast scale must 
be controlled by frequently enough observations to prevent error growth and 
affect the slow scale.	

3. The coupling changes the Lyapunov spectrum, and it seems important to also 
control neutral and weakly stable modes.	

                                              	



Kuramoto-Shivashinsky coupled model:	

Domain size of 32 for Atmos and 
256 for Ocean on a 1024 nodes grid. 

𝜖 > 1: ocean evolves on a slower scale than 
the atmosphere. 

Coupled data assimilation in Ensemble Filters 

Uncoupled (left) and Coupled (right); 𝜖 = 
1 



Coupled data assimilation 

Uncoupled (left) and Coupled (right); 𝜖 = 
1 

Uncoupled (left) and Coupled (right); 𝜖 
= 4 



Correlations, using 1000 ensemble members 

Coupled (right); 𝜖 = 
4 

Uncoupled 



Correlations, using 1000 ensemble members 

Coupled (right); 𝜖 = 
4 

Uncoupled 



The best localization scale for small ensemble size?

Vastly different scales…, and how to do cross-system covariances? 



Adaptive localization
Local analysis updates a gridpoint using only “nearby” observations. 
• Distance-based truncation of “spatially” remote obervations. 
• Correlation-based truncation of “weakly correlated” observations. 

We define a correlation distance as

Truncating when the correlation distance 

Hence: spatial distance becomes irrelevant, only correlation value 
matters.



Adaptive localization
Root-mean-square errors                                          Ensemble standard 
deviation

Adaptive localization seems the way to go !



Sea-ice –ocean and –atmosphere data assimilation
Sea-ice DA is still in its infancy, EnKF most advanced method, but problem is highly 
nonlinear:	
1) sea-ice boundary (covariances can ‘flip’)	

    
fresh melting water	
Cov(conc, S) > 0

melt due to warm saline water	
Cov(conc, S) <0

Melting sea ice Via atmosphere

Via ocean



Sea-ice –ocean and –atmosphere data assimilation

2) sea-ice concentration in [0,1], so not Gaussian	

3) Sea-ice thickness > 0, so not Gaussian	

4) Equation of state highly nonlinear (ridging)	

5) observational difficulties (melt ponds, snow on ice, sea-ice thickness categories)	
    

sea level

low-density ice/snow high-density ice/snow

sea level



Atmospheric chemistry - meteorology
• Meteorology and atmospheric chemistry can be highly coupled. 	
• Even when influence of atmospheric chemistry on meteorology is neglected, the 

relations between e.g. concentration fields and winds allow for updates in meteorology.	
• But coupling often highly nonlinear	

t=0                                                                     t=T

X

X

X

low wind correlates 	
with low concentration

high wind, 	
correlates with	
low concentration

medium wind correlates	
with high concentration



Pdf of concentration at time t and wind strength

= concentration	
   at time t

= Wind strength = transport error

This is highly	
non-Gaussian !

(see e.g. Anderson 2020, MWR)



Land-atmosphere DA
Highly irregular covariances

https://www.mdpi.com/atmosphere/atmosphere-09-00127/article_deploy/html/images/atmosphere-09-00127-g001.png


Land-atmosphere DA

https://www.mdpi.com/atmosphere/atmosphere-09-00127/article_deploy/html/images/atmosphere-09-00127-g002.png


Nonlinear data-assimilation methods I
Markov-Chain Monte-Carlo methods 
(e.g. Metropolis-Hastings, Langevin 
sampling, Hamiltonian Monte-Carlo)	
• These schemes are sequential in 

generating ensemble members	
• Only for small (<10) dimensions	

Particle Filters/Smoothers 	
• Generate samples in parallel, use 

Importance sampling. High-
dimensional variants biased.	

• Highly efficient schemes use 
tempering (iterative likelihood 
refinement)

Burn in Actual samples



Nonlinear data-assimilation methods II

One-step Optimal transportation filters	
• Find transport map between posterior 

and reference (Gaussian) pdf, and 
between prior and reference pdf	

• Use e.g. triangular map	

Particle Flow filters/smoothers	
• Flow in pseudo time	
• Stochastic versions can be made 

unbiased	
• used in high-dimensions!     Before observations            After observations	

       ‘Prior’                                    ‘Posterior’



    Prior pdf                                                                 Posterior pdf

Particle flow in pseudo time

Particle Flows: propagation of pdf from prior to posterior

The prior and posterior can be for a model state (filter) or a model trajectory (smoother)	
 or a set of parameters, or a combination of these.



Particle flow in pseudo time

    Prior pdf                                                                 Posterior pdf



Particle Flow converged on posterior pdf

    Prior pdf                                                                 Posterior pdf
Hu, C-C, and P.J. van Leeuwen (2021) A particle flow filter for fully nonlinear high-dimensional data assimilation., 	
Q.J. Royal Meteorol. Soc.,  doi: 10.1002/qj.4028

Not degenerate by construction



5-layer primitive equation model of the atmosphere with variables U, V, T, SLP	
28.200 gridpoints	
Assimilation of sea-level pressure (SLP)	
1) 	
2)	

Ensemble size 25 particles	
Compare EnKF and PFF

Particle Flow Filter on a high dimensional atmospheric model



Linear observation	
operator with Gaussian 	
observation errors	

Domain averaged 	
values



Nonlinear observation	
operator with Gaussian 	
observation errors	

Domain averaged 	
values



Conclusions

• Data assimilation theory is simple, but developing practical schemes is complicated.	
• DA for Earth system models in its infancy	
• Main effort in coupled ocean-atmosphere, which seems most complicated due to size 
of problem and different time scales	
• DA problem is be coming highly nonlinear	
• Atmospheric chemistry will be a killer…	
• All agencies are in high need of DA expertise	
• ML is unlikely to take over soon.



Shameless plug…

• Free open access book	
• doi: 10.1007/978-3-030-96709-3


