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1. Motivation, Spanning Scales 10-6m  106m

Lawson & Gettelman, PNAS (2014)
1.2x107m



Cloud Radiative Effects are Large

IPCC 2013 (Boucher et al 2013) Fig 7.7

Rcloudy - Rclear



Clouds = Largest Uncertainty in Climate Feedbacks  

Mean 
    CMIP3 (2006) 
    CMIP5 (2013)

Planck Water  
Vapor

Lapse  
Rate Cloud Albedo

IPCC, 2013 (Ch 9, Hartmann et al 2013) Fig 9.43

Planck   ε = σT4   (-) 

Water Vapor 
+T & RH=C  +H2O   (+) 

Lapse Rate     (-) 

Albedo (snow, ice) 
+T  less snow, ice  
-T  more snow, ice (+) 

Clouds: Complicated  (+)



Climate Feedbacks  
Equilibrium Climate Sensitivity (ECS) Uncertainty: It’s all about cloud feedback

Zelinka et al 2020, GRL

CESM2

(σT4) Lapse Rate

RH Change

CESM1= 4.1K 
CESM2= 5.3K



Cloud Microphysics Kills!

• Clouds are responsible for most 
severe weather 

• Tornadoes, Thunderstorms, Hail, Tropical 
Cyclones 

• Critical cloud processes depend on 
microphysics (latent heat release, cold 
pools, freezing, electrification)



Community Atmosphere Model (CAM6/7)

Dynamics

Unified Turbulence
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Aerosols

Clouds (Al),  
Condensate (qv, qc)
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Number Conc

A, qc, qi, qv 
rei, rel
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Clouds & Condensate:  
T, Adeep, Ash

A = cloud fraction, q=H2O, re=effective radius (size), T=temperature  
(i)ce, (l)iquid, (v)apor 

4-Mode 
Liu, Ghan et al

2 Moment 
Morrison & Gettelman 
Ice supersaturation 
Prognostic 2-moment Precip

Crystal/Drop 
Activation

CLUBB

Sub-StepMicrophysics
Zhang- 
McFarlane

Deep Convection

2. What is Cloud Microphysics?
Finite Volume Cartesian



Essence of Cloud Microphysics

• Define the evolution of the condensed water phases (liquid and ice) 
• Includes:  

• Phase determination (solid, liquid, mixed) 
• Distribution of drop and crystal sizes 
• Evolution of these species 
• Thermodynamic effects of condensation and evaporation 

• Inputs 
• Atmospheric State (humidity, temperature) 
• Cloud macrophysics (large scale condensation) 
• Dynamics (vertical velocity) 

• Outputs 
• Definitions and tendencies for condensed phase, temperature, vapor



3. Scales of Atmospheric Processes



Scales and parameterization

• OK: If processes have a large separation from the grid scale 
• Statistical (empirical) treatments often work: can represent small scale 

uniquely with state of large scale 

•  Problems: When the scales get close together 
• Example: representation of moist convection, or cloud dynamics in general 
• Convective equilibrium is a large scale process 

• Key issue: proper representation of sub-grid variability



4. Cloud ‘Macrophysics’ & Sub-Grid Variability 

• Generalized way to deal with small scales 
• Not all processes assume uniform grid cell state 
• Some processes are highly non-linear, so ‘sub-grid’ variability is 

assumed 
• Cloud Macrophysics = condensation of water  

• Simple if all scales resolved 
• Need to deal with sub-grid variability for most applications. 
• Used by microphysics and radiation



Sub-Grid Humidity and Clouds
Liquid clouds form when RH = 100%  (q>esat) 

But if there is variation in RH in space, some clouds will 
form before mean RH = 100%

Horizontal fraction of Grid Box

RH

100%

Mean RH

0.5 1.0

Clear 
(RH < 100%)

Cloudy 
(RH = 100%)

0.0

Humidity in a grid box  
with sub-grid variation



Sub-Grid Humidity and Clouds
Liquid clouds form when RH = 100%  (q>esat) 

But if there is variation in RH in space, some clouds will 
form before mean RH = 100%

Fraction of Grid Box

RH

0.5 1.0

Clear 
(RH < 100%)

Cloudy 
(RH = 100%)

0.0

Assumed Cumulative 
Distribution function of 
Humidity in a grid box  
with sub-grid variation

100%

Mean RH



‘Sub-Grid’ in different scale models
What is resolved at different scales? 
• Global Scale (15-400km) 

• Example: Resolve ‘synoptic’ systems and the general circulation 

• Regional/Mesoscale (0.5-20km) 
• Better resolution of orography, ‘permit’ deep convection at scales < ~5km 

• ‘LES’ scale (10m – 200m) 
• Resolve convection, ‘permit turbulence’ at 100m or less 

• Turbulence (5-50m) 
• Microphysics is still ‘sub-grid’ scale, resolve almost all motions 

’Gray Zone’ = process is too big to describe statistically, too small to resolve completely



Cloud Macrophysical Approaches

• LES: ‘explicit’ 
• The atmosphere is not significantly supersaturated w.r.t. liquid (ever)  
• Still parameterizations for ice processes (ice supersaturation) 

• Fractional Cloudiness 
• Clouds form before grid reaches 100% supersaturation 
• Analytic distributions: Box or Triangular PDF 

• Complex treatments: PDFs schemes 
• Multivariate PDFs or Higher Order Closure 
• Predict higher order moments of multivariate PDL of θl & w 



Dynamics-Based PDFs for Cloud Parameterization: Motivation

• Moisture-based PDFs (widely used to represent cloud cover in GCMs) are 
not linked to dynamics of cloud formation and dissipation

RH

• Key cloud processes (drop activation, 
entrainment, and precip. Formation) are closely 
linked to vertical motions 

• Need joint distributions of thermodynamics and 
dynamics (vertical motion) 

• These are called Higher Order Closure (HOC) 
schemes (e.g. CLUBB, SHOC) 



5. Types of Microphysical Schemes

Two Moment = Prognostic Mass and Number 
One Moment = Prognostic Mass, Diagnostic Number/Size

Figure: Morrison et al 2020, JAMES

Used in models at scales: 
 Global & Mesoscale models  Mesoscale /Large Eddy Simulations/Parcel LES/Parcel 



Ultimate Schematic

• 6 class, 2 moment scheme 
• Seifert and Behang 2001 
• Processes 

• Maybe a matrix better? 

• Break down by processes

Seifert, Personal Communication



Cloud Microphysical Processes: Rain
Evaporation and condensation of cloud droplets 
usually parameterized by saturation adjustment scheme. 

Autoconversion is an artificial process introduced by the 
separation of cloud droplets and rain. Parameterization of the 
process is difficult and uncertain.

Evaporation of raindrops is very important in convective systems. 
Determines the strength of the cold pool. Parameterization difficult, since 
evaporation is very size dependent.

Even for the warm rain processes a lot of things are unknown: effects of mixing / 
entrainment on the cloud droplet distribution, effects of turbulence on 
coalescence, coalescence efficiencies, collisional breakup or the details of 
the nucleation process. 



 Collision-Coalescence Process



Detailed model of Rain Formation



Mixed (ice and vapor) Phase

• Ice saturation vapor pressure is lower 
• Once ice forms it will preferentially take up vapor.  
• Vapor deposition onto ice will occur (Bergeron-Findeisen process) 
• This will cause evaporation of liquid water 
• Key issue: how homogenous is a cloud? Key for mixed phase. In 

general: not well mixed



Mixed Phase: Ice



Dynamics
• Updraft strength is important for microphysics 

• Adiabatic cooling generates supersaturation 
• Rate affects particle growth and nucleation 

• Cloud dynamics  
• Turbulence and mixing (moist or dry air) 
• Entrainment (especially important for convection) 

• Microphysics feeds back on dynamics 
• Heating due to condensation/evaporation 
• Water (precipitation) changes pressure gradient



Key Cloud Properties
• Cloud Phase 
• Particle size distribution  

• liquid drops are spheres 

• Mass (Liquid water path) 
• Allows calculation of optical depth  

• absorption and emission 

• Precipitation  
• Also has a size distribution 

• Process rates depend on size distribution



Summary

• Cloud processes governed by a series of processes related to 
transformation and evolution of water 

• Goal for radiation and precip is drop size distribution 
• Humidity is fundamental 
• Dynamics is fundamental 
• Tight coupling to local dynamics 



6. Description of PUMAS Scheme 

• Used in CAM6/7 
• Derivative of Morrison et al 2005 WRF scheme 

• MG2 = identical to M2005 for liquid 
• MG3 = adds graupel/hail 
• PUMAS = new foundation and current development 

• Bulk 2-Moment 4/5-class scheme 
• Mass and number 
• Liquid, Ice, Rain, Snow (Graupel) 
• Takes in state, activated number of aerosols 
• Prognostic rain, snow



Community Atmosphere Model (CAM6)
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q, N 
Cloud Ice 

(Prognostic)

q, N 
Snow 

(Diagnostic)

q, N 
Cloud Droplets 

(Prognostic)

q, N 
Rain 

(Diagnostic)

q 
Water Vapor 
(Prognostic)

q = mixing ratio 
N = number concentration

Morrison & Gettelman 2008

Cloud Microphysics: Representing 4 ‘classes’



Size distributions and Classes
What does q, N mean?  
Moments of a size distribution 
0 = Number 
3 = Mass (=6/(πρw)*M3 

6 = Reflectivity (radar) R ~ D6

In MG/PUMAS: Gamma functions for each class:

D = diameter 
N0 = intercept 
µ = shape, (~1/dispersion^2) 
λ = slope 

Different values/methods for each class. E.g. µ=0 for ice



q, N 
Cloud Ice 

(Prognostic)

q, N 
Snow 

(Diagnostic)

q, N 
Cloud Droplets 

(Prognostic)

q, N 
Rain 
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Vapor Dep 
Freezing
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Water Vapor 
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Evaporation Sublimation
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q = mixing ratio 
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Riming

Autoconversion

Accretion
Accretion

Morrison & Gettelman 2008

Autoconversion

Transformations Between Classes



q, N 
Cloud Ice 
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Morrison & Gettelman 2008Sources & Sinks
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Melting/Freezing

Au ~ qc/Nc 

Ac ~ qrqc 

7. Important Processes



Microphysical Process 
Rates

Autoconversion

Autoconversion

Accretion

Autoconversion and 
Accretion are critical 

Bergeron process is also 
important for cold clouds

S. Ocean

Tropical W.  
Pacific

Bergeron

Bergeron



Auto-conversion (Ac) & Accretion (Kc)
Khairoutdinov & Kogan 2000: regressions from LES experiments with explicit bin model

• Auto-conversion an inverse function of drop number 
• Accretion is a mass only function

Balance of these processes (sinks) controls mass and size of cloud drops

Ac = 

Kc=



Autoconversion and Accretion & Sub Grid

• If cloud water has sub-grid variability, then the process rate will not be 
constant.  

• Autoconversion/accretion: depends on co-variance of cloud & rain water 
• Assuming a distribution (log-normal) a power law M=axb can be integrated 

over to get a grid box mean M

and vx is the normalized variance vx = x2/σ2 

E = Enhancement factor

E.g.: Morrison and Gettelman 2008, Lebsock et al 2013



Observing co-variance of cloud and rain

Lebsock et al 2013

• Observe cloud/rain from satellites (CloudSat) 
• Calculate variance, mean and normalized 

variance (v) or homogeneity 
• Yields observational estimate of Ac & Au 

enhancement factors.



Enhancement Factors
• More enhancement in drier 

regions, and regions with more 
variance 

• Good example of observing 
higher order effects and sub-
grid scale variability from Space 

• Also an example of how to use 
observations to constrain 
microphysical process rates. 

Lebsock et al 2013



Ice Supersaturation
Sorted by CLDF < 0.7

Cloudy points

Observations show the upper 
troposphere is often supersaturated with 
respect to ice 

Models usually close condensation on 
liquid and ice saturation.  

Some models (e.g. CAM, MG) do not do 
this, require ice to form from ice 
nucleation 

Allows ice supersaturation (‘ICE’) in figure



8. Numerical considerations: Sedimentation

• GCM timesteps are long (1800s) 
• If rain falls at 1-5 m/s, then in 1 timestep it 

crosses several levels 
• CFL problem for sedimentation 

Figure: maximum timestep for satisfying 
CFL condition with different updraft 
speeds and fall speeds for rain (5m/s) 

Control for this in microphysics (sub-steps)



8. Numerical considerations: clipping

• Can also ‘run out of 
water’ with long 
timesteps 

• Process rates are non-
linear: lots of 
condensation means 
more autoconversion 

• Shorter timesteps 
yield a different 
solution



8. Numerical considerations: coupling

• Similar issues occur 
with condensation 
itself, and coupling 
with macrophysics



Alternatives: Implicit Sedimentation 
Testing Numerics

• Explicit sedimentation iterates 
(substeps) to reduce the 
timestep for sedimentation 

• Alternative is an implicit 
calculation. More diffusive, less 
accurate, but does not vary as 
much with timestep 

• Latest versions include option 
for implicit sedimentation: less 
sensitive to timestep than 
explicit sedimentation



9. Evaluation with Observations

• Size distributions v. In-situ data 
• Global Evaluations of Cloud Microphysics  

• Mostly satellite based. Still issues with Satellite date 

• Local Evaluations of Cloud Microphysics (In Situ):  
• How to compare a global model to individual observations? 
• Climatology: Ice microphysics 
• Individual Flight comparisons (HIPPO)



Comparisons with observations 
TC4 tropical observations of ice clouds v. temp 

• Size distributions (Moments) 
• Ice Water Content

Number

Mass
Ice Water Content

Eidhammer et al 2014



Evaluation v. Satellites (limited)

• Comparison between model and 
Observations 

• Note that Observations of ice 
mass are highly uncertain (factors 
of 1.5-2 differences) 

• Distribution and pattern is similar 
• Most of ‘mass’ is in falling snow

Gettelman et al 2010



Ice Supersaturation Frequency
Unique measurements of T and Q from AIRS at high resolution (50km) yield RH

Gettelman et al 2010



Satellite Super-cooled Liquid

70S 61S

5km

10km

2013-01-01 S. Ocean (S. Of Pacific)

Ice SupercooledLiquid

2014-02-07  N. Pacific

5km

10km

Most thin layers of super-cooled liquid over ice 
Radar & Lidar (CloudSat + Calipso) product

45N 60N

Another unique measurement: Co-located Radar and Lidar 
Radar sensitive to size (sees large ice v. liquid) and solid ice shows up well on Lidar



Cloud Phase
SOCRATES in-situ flights over the S. Ocean used 
to understand & improve models 

CAM6: Too little ice. This contributes to high 
climate sensitivity. 

Looking at modifications now

Gettelman et al 2020

Model 
Observations



Microphysics, Size distributions
Advanced GCMs/GSRMs can be compared directly to cloud 
microphysical size distributions (here from SOCRATES). 

Gettelman et al 2020Note potential issue with too large rain sizes

Comparison is GCM cloud microphysics along aircraft flight tracks with in-situ data



Microphysics: Comparing to Reflectivity

Gettelman, Forbes, Fielding, in Press GMD, 2024

Comparisons over Macquarie Island in S. Ocean 
between a precipitation radar and single column 
simulations with one-moment and 2-moment 
microphysics in the ECMWF-IFS SCM. 

Observation

2-moment micro

One-moment micro



10. Interactions with Aerosols
Clear sky in Beijing, Mon, Sept 19, 2006,  06:00 LT looking west



10. Interactions with Aerosols
Clear sky in Beijing, Thurs Sept 22,2016 ,06:00 LT looking west



Microphysics is affected by aerosols

• Activation of aerosols control drop number 
• Drop number impacts auto-conversion and accretion, radiation 
• This affects precipitation, cloud lifetime and cloud water 
• “Aerosol Cloud Interactions” 
• Highly uncertain…



Aerosol Effects on Clouds
• Scattering & Absorption = Direct effects 

• Beijing picture 

• Aerosol – Cloud – Interactions (ACI) 

  +Aerosols  +CCN  +Nc   ΔCRE

CREClean
CREAero

Net Cooling Effect: brighter clouds 
Also: delay in precipitation. Longer lived Clouds?



‘Volcanic Tracks’

Schmidt et al 2012

S. Sandwich Islands (Between S. America & Antarctica)

SO2 emissions from Effusive Volcanoes Brighten Clouds



‘Volcano Tracks’: Satellite Climatology

2500 km

Satellite data for C. Pacific, 10 year 
climatology around the Hawaiian Islands 

SO2 is from Kilauea Volcano on Hawaii 
(Small-Griswold & Gettelman, in Prep)

Kilauea

12N̊

24N̊

154W̊180W̊



Climate 
Forcing
Aerosol Cloud 
interactions are the 
largest uncertainty in 
Climate forcing

IPCC, 2013, SPM.5



‘Direct’ Direct + Semi Direct

Boucher et al 2013, Figure 7.19

ACI = Indirect

Aerosol Effects: Present – Preindustrial Forcing
• Large uncertainties 
• Difference between 

models and estimates from 
observations 

• Models have a larger effect 
than observed 

• Why? Either: 
• Obs are incorrect 
• Microphysics is missing 

something 
• What is missing? 

‘buffering’: e.g. 
evaporation feedbacks?



10. Interactions with Radiation: Liquid

• Cloud Radiative Effects related to Albedo 

• Albedo depends on optical depth (τ) and cloud cover/fraction (C). β = 
constant 

• τ a non-unique function of size and mass 

• Droplets well constrained (CAM6: self-consistent) 
• Note: significant implications for OBSERVING cloud microphysics

Seifert et al 2015, JGR



Aside: observing cloud microphysics
• Satellites observe τ in some wavelength (even 

active sensors) 

• τ is a non-unique function of N (or re), LWP

• To determine cloud microphyiscs (N, LWP), need 
to make an assumption (e.g. adiabatic) 

• Better: IR more sensitive to re, microwave more 
sensitive to LWP 

• Still large uncertainties (even for liquid) 

Nakajima and King,, JAS, 1989



Interactions with Radiation: Ice

• Ice is more complicated 
• It’s not spherical: different ‘habits’ have 

different optical properties 
• Ice clouds are typically a collection of 

habits 
• Impacts optics (absorption, scattering), also 

sedimentation



Microphysics in cumulus parameterization
• Large scale models also typically have a 

‘convective’ or cumulus cloud 
parameterization.  

• Usually diagnostic, estimate mass fluxes, 
precipitation and detrainment 

• Can be used to estimate microphysical 
rates 

• Methods: Convective mass fluxes supply 
the condensation. Calculation going 
upwards for condensation & activation. 
Then downward (same as stratiform)

Song and Zhang 2011,2012

11. Latest Developments/Options



Can we do the warm rain process better with Machine Learning? 

Replace traditional GCM bulk rain formation with a bin model 
formulation for stochastic collection. This is too expensive for 
climate use. So emulate it with a neural network. 

Results: 
• We can change the answer in the model with the bin code.  
• Very slow when using full treatment 
• Recover speed and recover results with a neural network 

emulator (it works) 
• Embedded NN in the microphysics: maintains conservation with 

series of checks  

Emulator Performance

Bin code is Different 
than original model

NN Emulator reproduces 
detailed code

Machine Learning the Warm Rain Process

Gettelman et al 2021, JAMES



Improving results with Machine Learning

Precipitation Frequency

Control v. Observations and  
Bin precipitation and ML Emulator. 
Using stochastic collection from a bin scheme 
improves large scale precipitation frequency in 
shallow clouds

Gettelman et al 2021, JAMES

Replace autoconversion and 
accretion in a bulk scheme 
with stochastic collection 
with a bin scheme. Then 
emulate that with a neural 
network. 

Reduces rain rate for small 
drop sizes but large LWP



Alternatives: Unified Ice

Liquid and rain nearly ALWAYS form two 
distinct distributions 
Not so for ice, so separation of ice and snow is 
a bit arbitrary 
Several schemes have worked to unify ice and 
snow 
• Predicted Particle Properties (P3): Morrison 

& Milbrant (2015) 
• MG: Eidhammer et al (2016)



Alternatives: Learning the Functional Form (BOSS)

• Can prognose any moments of the size 
distribution  

• Generalize as a series of conservation 
equations for moments AND generalize 
process rate equations 

• Can then try to learn the relevant parameters 
as a set of functions 

• New warm rain scheme for this: Bayesian 
Observationally Constrained Statistical–
Physical Scheme (BOSS)  

• Morrison, van Lier-Walqui et al (2020)



Global Modeling to 1.6km…

• Regionally Refined Global Model 
(SCREAM-E3SM) 

• Evolution of a Mesoscale Convective 
Storm in the US 

• WRF and SCREAM using 2-moment bulk 
microphysics with graupel/hail (P3)

Liu et al 2023, JAMES



● Global Model: CESM-MPAS: 3km regional, non-
hydrostatic dynamics. (Earthworks Prototype) 

●  Regional climate model: WRF (CONUS) 4km 
(Rasmussen et al., 2021)

Climate Extremes: Variable-Resolution (603 km) 

Huang et al 2022, GMD

Pr
ec
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tio
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W. USA Wet-season (Nov-Mar) precip (5yrs) 
• CESM-MPAS results compare well to obs 
• Smaller biases than WRF mesoscale model  

California Oregon Washington

Daily precipitation Intensity PDF
4km Mesoscale Model (WRF)  
3km Global Model (CESM) 
4km Observations 

CESM captures observed PDF better than 
WRF, especially for extreme precipitation
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12. Uncertainty and Parameters 
CAM6 Perturbed Parameter Ensemble

• 43 Parameters 
▪ Cloud Microphysics (11), Turbulence (11), Aerosols (9), Deep Convection (12) 

• 263 parameter sets for simulations, selected using Latin Hypercube Sampling 
• Three types of simulations (3 years): all fixed SST (‘Climatological AMIP’) 

▪ PD: Present Day forcing, SSTs 
▪ PI: Pre-Industrial (1850) Aerosol Emissions  
▪ SST4K: Present day with SST + 4K (Cess et al 1989) 

• Data available (https://doi.org/10.26024/bzne-yf09)

PPE Spread CCN TOA 
Residual

https://doi.org/10.26024/bzne-yf09


PPE Forcing and Feedback

Forcing:      Present day (PD) - Pre-industrial (PI) aerosol 
Feedback:  4K SST - Present day (PD) Gettelman 2024, JGR, in Review



Key Parameter Sensitivities: 
Using Gaussian Process Emulators

• Gaussian process emulators for 
forcing and feedback 

• Global (A) and regional (B-D) 
• Large uncertainties (1σ in A) 
• Identify key parameters with 

correlations 
• Key parameters mostly in the 

cloud microphysics (5/6) 
▪ Ice processes (2) 
▪ Rain formation (2) 
▪ Aerosol activation (1) 

• Can also look at parameter 
relations to state parameters

Gettelman 2024, in Press JGR



Some Conclusions
• Cloud Microphysics is critical for weather and climate prediction 
• Microphysics describes what happens to condensed phase in clouds 
• Inputs from state, condensation (macrophysics/turbulence), aerosols 
• Output is precipitation, detailed size distributions (for radiation code) 
• PUMAS is a bulk 2-moment scheme (mass, number) 
• Coupled to an aerosol activation scheme so aerosols affect cloud drop 

number concentrations 
• Future of cloud microphysical parameterization 

• Focus on ice/snow, mixed phase, precipitation formation 
• Machine learning will be used in new ways, emulation, parameter optimization 
• Turbulence-cloud interactions are important


