
PGI Tools User’s
Guide
Parallel Tools
for Scientists and Engineers

The Portland Group Compiler Technology
STMicroelectronics
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070
www.pgroup.com

http://www.pgroup.com/

While every precaution has been taken in the preparation of this document, The Portland Group™
Compiler Technology, Microelectronics makes no warranty for the use of its products and
assumes no responsibility for any errors that may appear, or for damages resulting from the use of
the information contained herein. The Portland Group™ Compiler Technology, Microelectronics
retains the right to make changes to this information at any time, without notice. The software
described in this document is distributed under license from The Portland Group™ Compiler
Technology, STMicroelectronics and may be used or copied only in accordance with the terms of
the license agreement. No part of this document may be reproduced or transmitted in any form or
by any means, for any purpose other than the purchaser’s personal use without the express written
permission of The Portland Group™ Compiler Technology, STMicroelectronics

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this manual, The Portland Group™
Compiler Technology, Microelectronics was aware of a trademark claim. The designations have
been printed in caps or initial caps.

CDK and The Portland Group are trademarks and Cluster Development Kit, PGI, PGF90,
PGHPF, PGF77, PGCC, PGPROF, and PGDBG are registered trademarks of
STMicroelectronics, Inc. Other brands and names are the property of their respective owners.

PGI Tools User’s Guide
Copyright © 1998 - 2003 STMicroelectronics, Inc.
All rights reserved.
Printed in the United States of America

First Printing: Release 5.0, June 2003

Part Number: 2040-990-888-0603

Technical support: trs@pgroup.com
Sales: sales@pgroup.com

http://www.pgroup.com

mailto:trs@pgroup.com
mailto:sales@pgroup.com
http://www.pgroup.com/

Table of Contents iii

Table of Contents
TABLE OF CONTENTS .. III

PREFACE..1

AUDIENCE DESCRIPTION..1
COMPATIBILITY AND CONFORMANCE TO STANDARDS...1
ORGANIZATION..2
CONVENTIONS ...3
RELATED PUBLICATIONS ...3
SYSTEM REQUIREMENTS..4

THE PGDBG DEBUGGER ...5

1.1 DEFINITION OF TERMS ...5
1.1.1 Compiler Options for Debugging ..6

1.2 INVOCATION AND INITIALIZATION ...6
1.3 COMMAND-LINE ARGUMENTS...7
1.4 COMMAND LANGUAGE ..8

1.4.1 Constants ...8
1.4.2 Symbols ..8
1.4.3 Scope Rules ..9
1.4.4 Register Symbols..9
1.4.5 Source Code Locations ..10
1.4.6 Lexical Blocks ..11
1.4.7 Statements ..12
1.4.8 Events...12
1.4.9 Expressions ..15

1.5 SIGNALS...17
1.5.1 Signals Used Internally by PGDBG...17

1.6 DEBUGGING FORTRAN...18
1.6.1 Arrays...18
1.6.2 Operators ...18
1.6.3 Name of Main Routine ...18
1.6.4 Fortran Common Blocks..18
1.6.5 Nested Subroutines...19
1.6.6 Fortran 90 Modules ...20

1.7 DEBUGGING C++ ..21
1.8 CORE FILES..22
1.9 PGDBG COMMANDS...22

iv Table of Contents

1.9.1 Commands ...22
1.9.1.1 Process Control ..22
1.9.1.2 Process-Thread Sets ...25
1.9.1.3 Events..26
1.9.1.4 Program Locations ...33
1.9.1.5 Printing and Setting Variables..35
1.9.1.6 Symbols and Expressions..37
1.9.1.7 Scope...39
1.9.1.8 Register Access ...40
1.9.1.9 Memory Access ...41
1.9.1.10 Conversions ..43
1.9.1.11 Miscellaneous ...44

1.10 COMMANDS SUMMARY ...49
1.10.1 Command Summary...50

1.11 REGISTER SYMBOLS ..57
1.11.1 X86 Register Symbols ..58
1.11.2 AMD64 Register Symbols ..59

1.12 X-WINDOWS GRAPHICAL USER INTERFACE ..61
1.12.1 Main Window...62
1.12.2 Disassembly Window ...63
1.12.3 Register Window..64
1.12.4 Memory Window..65
1.12.5 Custom Window ...66
1.12.5.1 Setting the Font...67

1.13 PGDBG: PARALLEL DEBUG CAPABILITIES ...68
1.13.1 OpenMP and Linuxthread Support..68
1.13.2 MPI Support...69
1.13.3 Process & Thread Control...69
1.13.4 Graphical Presentation of Threads and Processes..69

1.14 DEBUGGING PARALLEL PROGRAMS WITH PGDBG ...70
1.14.1 Processes and Threads ..70
1.14.2 Thread-Parallel Debugging...71
1.14.3 Graphical Features.. 72
1.14.4 Process-Parallel Debugging..74

1.15 THREAD-PARALLEL AND PROCESS-PARALLEL DEBUGGING ...80
1.15.1 PGDBG Debug Modes and Process/Thread Identifiers ..80
1.15.2 Threads-only debugging ..81
1.15.3 Process-only debugging...81
1.15.4 Multilevel debugging ...82
1.15.5 Process/Thread Sets...82
1.15.6 P/t-set Notation ..83
1.15.7 Dynamic vs. Static P/t-sets...85

Table of Contents v

1.15.8 Current vs. Prefix P/t-set ...85
1.15.9 P/t-set Commands ..86
1.15.10 Command Set ...88
1.15.11 Process and Thread Control ..91
1.15.12 Configurable Stop Mode ..92
1.15.13 Configurable Wait mode ..93
1.15.14 Status Messages ...96
1.15.15 The PGDBG Command Prompt...97
1.15.16 Parallel Events...98
1.15.17 Parallel Statements ..101

1.16 OPENMP DEBUGGING ...102
1.16.1 Serial vs. Parallel Regions...103
1.16.2 Disabling PGDBG's OpenMP Event Support..104

1.17 MPI DEBUGGING...105
1.17.1 Process Control ...105
1.17.2 Process Synchronization..105
1.17.3 MPI Message Queues ..106
1.17.4 MPI Groups ...106
1.17.5 MPI Listener Processes ...106
1.17.6 SSH and RSH ...107

1.18 LIMITATIONS..107
1.18.1 PGDBG Limitations—Parallel Debugging ...107
1.18.2 Other Limitations ...108
1.18.3 Private Variables ...108

THE PGPROF PROFILER..111

2.1 INTRODUCTION ..111
2.1.1 Definition of Terms ..112
2.1.2 Compilation..112
2.1.3 Program Execution ..113
2.1.4 Profiler Invocation and Initialization ..113
2.1.5 Virtual Timer..114
2.1.6 Profile Data ...115
2.1.7 Caveats...116
2.1.7.1 Clock Granularity ...116
2.1.7.2 Optimization..116

2.2 X-WINDOWS GRAPHICAL USER INTERFACE ..117
2.2.1 Command Line Switches and X-Windows Resources ..117
2.2.2 Using the PGPROF X-Windows GUI ..119
2.2.2.1 File Menu ..120
2.2.2.2 Options Menu..121
2.2.2.3 Sort Menu and The Sort Option Box...121

vi Table of Contents

2.2.2.4 Select Menu and The Select Option Box ...122
2.2.2.5 Processes Menu ..122
2.2.2.6 SingleProcess Menu..123
2.2.2.7 Threads Menu ...123
2.2.2.8 View Menu ..124
2.2.2.9 Help Menu ..126

2.3 COMMAND LANGUAGE ..126
2.3.1 Command Usage..126

INDEX ...131

LIST OF TABLES

Table 1-1: PGDBG Operators... 16

Table 1-2: Debugger Commands .. 49

Table 1-3: PGDBG Commands .. 50

Table 1-4: General Registers .. 58

Table 1-5: Floating-Point Registers .. 58

Table 1-6: Segment Registers ... 58

Table 1-7: Special Purpose Registers ... 59

Table 1-8: General Registers .. 59

Table 1-9: Floating-Point Registers .. 59

Table 1-10: Segment Registers ... 60

Table 1-11: Special Purpose Registers ... 60

Table 1-12: SSE Registers .. 60

Table 1-13: Thread State is Described using Color .. 74

Table 1-14: Process state is described using color.. 76

Table of Contents vii

Table 1-15: MPI-CH Support ...77

Table 1-16: The PGDBG Debug Modes...80

Table 1-17: P/t-set commands...86

Table 1-18: PGDBG Parallel Commands ...88

Table 1-19: PGDBG Stop Modes ...93

Table 1-20: PGDBG Wait Modes...94

Table 1-21: PGDBG Wait Behavior ...95

Table 1-22: PGDBG Status Messages ..97

LIST OF FIGURES

Figure 1-1: PGDBG Debugger Main Window ...62

Figure 1-2: Disassembly Window ..64

Figure 1-3: Register Window..65

Figure 1-4: Memory Window ...66

Figure 1-5: Custom Window ..67

Figure 1-6: PGDBG GUI Interface: PGI Workstation..73

Figure 1-7: PGDBG GUI Interface: Cluster Development Kit...79

Figure 2-1: Profiler Window...119

Figure 2-2: View Menu...125

Preface 1

Preface
This guide describes how to use The Portland Group Compiler Technology (PGI) Fortran, C, and
C++ debugger and profiler tools. In particular, these include the PGPROF profiler, and the
PGDBG debugger. You can use the PGI compilers and tools to debug and profile serial (uni-
processor) and parallel (multi-processor) applications for X86 and AMD64 processor-based
systems.

Audience Description

This guide is intended for scientists and engineers using the PGI debugging and profiling tools. To
use these tools, you should be aware of the role of high-level languages (e.g., Fortran, C, C++)
and assembly-language in the software development process and should have some level of
understanding of programming. The PGI tools are available on a variety of operating systems for
the X86 and AMD64 hardware platforms. You need to be familiar with the basic commands
available on your system.

Finally, your system needs to be running a properly installed and configured version of the
compilers. For information on installing PGI tools, refer to the installation instructions.

Compatibility and Conformance to Standards

The PGI compilers run on a variety of systems and produce code that conforms to the ANSI
standards for FORTRAN 77, Fortran 90, C, and C++ and includes extensions from MIL-STD-
1753, VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77,
PGF90, PGCC ANSI C, and C++ support parallelization extensions based on the OpenMP
defacto standard. PGHPF supports data parallel extensions based on the High Performance
Fortran (HPF) defacto standard. The PGI Fortran reference manuals describe Fortran statements
and extensions as implemented in the PGI Fortran compilers.

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• American National Standard Programming Language FORTRAN, ANSI X3. -1991 (1991).

• International Language Standard ISO Standard 1539-199 (E).

2 Preface

• Fortran 90 Handbook, Intertext-McGraw Hill, New York, NY, 1992.

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston,
Texas (1993), http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston,
Texas (1997), http://www.crpc.rice.edu/HPFF.

• OpenMP Fortran Application Program Interface, Version 1.1, November 1999,
http://www.openmp.org.

• OpenMP C and C++ Application Program Interface, Version 1.0, October 1998,
http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

• HPDF Standard (High Performance Debugging Forum)
http://www.ptools.org/hpdf/draft/intro.html

Organization

This manual is divided into the following chapters:

Chapter 1 The PGDBG Debugger describes the PGDBG symbolic debugger.
PGDBG is a symbolic debugger for Fortran, C, C++ and assembly
language programs. Sections 1.1 through 1.13 describe PGDBG
invocation, commands, signals, debugging Fortran and C++ using
PGDBG, the PGDBG graphical user interface, and PGDBG parallel
debugging capabilities.

1.14 Debugging Parallel Programs with PGDBG describes how to
invoke the debugger for thread-parallel (SMP) debugging and for
process-parallel (MPI) debugging.

1.15 Thread-parallel and Process-parallel Debugging describes how to
name a single thread, how to group threads and processes into sets, and

http://www.ptools.org/hpdf/draft/intro.html

Preface 3

how to apply PGDBG commands to groups of processes and threads.

1.16 OpenMP Debugging describes some debug situations within the
context of a single process composed of many OpenMP threads.

1.17 MPI Debugging describes how PGDBG is used to debug parallel-
distributed MPI programs and hybrid distributed SMP programs.

1.18 Limitations describe the limitations of the PGDBG tool.

Chapter 2 The PGPROF Profiler describes the PGPROF Profiler. This tool
analyzes data generated during execution of specially compiled C,
C++, F77, F90 and HPF programs.

Conventions

This User's Guide uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text, including
assembly language statements.

[item1] in general, square brackets indicate optional items. In this case item1 is
optional. In the context of p/t-sets, square brackets are required to
specify a p/t-set.

{ item2 | item 3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown in the text of this guide using upper-
case characters and a reduced point size.

Related Publications

The following documents contain additional information related to the X86 architecture and the
compilers and tools available from The Portland Group Compiler Technology.

4 Preface

• PGF77 Reference User Manual describes the FORTRAN 77 statements, data types,
input/output format specifiers, and additional reference material.

• PGHPF Reference Manual describes the HPF statements, data types, input/output format
specifiers, and additional reference material.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

• FORTRAN 90 HANDBOOK, Complete ANSI/ISO Reference (McGraw-Hill, 1992).

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990)

• PGI User’s Guide, PGI Tools User’s Guide, PGI 5.0 Release Notes, FAQ, Tutorials
http://www.pgroup.com/docs.htm

• MPI-CH
http://www.netlib.org/

• OpenMP
http://www.openmp.org/

• Ptools (Parallel Tools Consortium)
http://www.ptools.org/

• HPDF (High Performance Debugging Forum) Standard
http://www.ptools.org/hpdf/draft/intro.html

System Requirements
• PGI CDK 5.0, or WS 5.0

• Linux (See http://www.pgroup.com/faq/install.htm for supported releases)

• Intel X86 (and compatible), AMD Athlon, AMD64 processors

http://www.pgroup.com/docs.htm
http://www.netlib.org/
http://www.openmp.org/
http://www.ptools.org/
http://www.ptools.org/hpdf/draft/intro.html
http://www.pgroup.com/faq/install.htm

The PGDBG Debugger 5

Chapter 1
The PGDBG Debugger
This chapter describes the PGDBG symbolic debugger. PGDBG is a symbolic debugger for
Fortran, C, C++ and assembly language programs. It allows you to control the execution of
programs using breakpoints and single-stepping, and lets you check the state of a program by
examining variables, memory locations, and registers. The following are PGDBG capabilities.

• Provides the capability to debug SMP Linux programs.

• Provides the capability to debug MPI programs on Linux clusters.

• Provides the capability to debug hybrid SMP/MPI programs on Linux clusters where each
node contains multiple CPUs sharing memory but where each node has a separate memory
from all other nodes.

1.1 Definition of Terms
Host The system on which PGDBG executes. This will generally be the system

where source and executable files reside, and where compilation is
performed.

Target A program being debugged.

Target Machine The system on which a target runs. This may or may not be the same
system as the host.

6 Chapter 1

For an introduction to terminology used to describe parallel debugging, see Section 1.14.1
Processes and Threads.

1.1.1 Compiler Options for Debugging

Use the –g compiler command line option to build programs for debugging. This option causes
information about the symbols and source files in the program to be included in the executable file
(this option also sets the optimization to level zero unless you specify –O on the command line).
Programs built without –g can be debugged; however, information about types, local variables,
arguments and source file line numbers is not available unless you specify –g.

When the -g compiler command line option is used, PGI compilers emit DWARF Version 2 debug
information by default. To emit DWARF Version 1 debug information, specify the -Mdwarf1
option with the -g option at the compiler command line.

1.2 Invocation and Initialization
PGDBG is invoked using the pgdbg command as follows:

% pgdbg arguments program arg1 arg2 ... argn

where arguments may be any of the command-line arguments described in the following section,
Command-line Arguments. See 1.14.4.1 Invoking PGDBG: MPI Debugging for how to debug an
MPI program.

The program is the name of the target program being debugged. The arguments arg1 arg2 …
argn are the command-line arguments to the target program. The debugger begins by creating a
symbol table for the program. Then the program is loaded into memory.

If an initialization file named .pgdbgrc exists in the current directory or in the home directory, it
is opened and PGDBG executes the commands in the file. The initialization file is useful for
defining common aliases, setting breakpoints and for other startup commands. If an initialization
file is found in the current directory, then the initialization file in the home directory, if there is
one, is ignored. However, a script command placed in the initialization file may execute the
initialization file in the home directory, or execute PGDBG commands in any other file (for
example in the file .dbxinit if you have a dbx debugger initialization file set up).

After processing the initialization file, PGDBG is ready to process commands. Normally, a session
begins by setting one or more breakpoints, using the break, stop or trace commands, and then
issuing a run command followed by cont, step, trace or next.

The PGDBG Debugger 7

1.3 Command-Line Arguments

The pgdbg command accepts several command line arguments that must appear on the command
line before the name of the program being debugged. The valid options are:

−dbx Start the debugger in dbx mode.

−−program_args PGDBG passes all arguments following this command line option to
the program being debugged if an executable is included on the
command line.

−s startup The default startup file is ~/.pgdbgrc. The –s option specifies an
alternate startup file startup.

−c "command" Execute the debugger command command (command must be in
double quotes) before executing the commands in the startup file.

−r Run the debugger without first waiting for a command. If the program
being debugged runs successfully, the debugger terminates. Otherwise,
the debugger is invoked and stops when the trap occurs.

−text Run the debugger using a command-line interface (CLI). The default is
for the debugger to launch in graphical user interface (GUI) mode.

−tp k8-32 Debug a program running on an X86 target machine. This option is
only necessary if the default PGDBG, determined by the PATH
environment variable, is not capable of debugging X86 targeted
programs.

−tp k8-64 Debug a program running on an AMD64 target machine. This option is
only necessary if the default PGDBG, determined by the PATH
environment variable, is not capable of debugging AMD64 targeted
programs.

8 Chapter 1

1.4 Command Language

User input is processed one line at a time. Each line must begin with the name of a command and
its arguments, if any. The command language is composed of commands, constants, symbols,
locations, expressions, and statements.

Commands are named operations, which take zero or more arguments and perform some action.
Commands may also return values that may be used in expressions or as arguments to other
commands.

There are two command modes: pgi and dbx. The pgi command mode maintains the original
PGDBG command interface. In dbx mode, the debugger uses commands with a syntax compatible
with the familiar dbx debugger. Both command sets are available in both command modes,
however some commands have a slightly different syntax depending on the mode. The pgienv
command allows you to change modes while running the debugger.

1.4.1 Constants

The debugger supports C language style integer (hex, octal and decimal), floating point, character,
and string constants.

1.4.2 Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol
table for the target program. The symbol table contains symbols to represent source files,
subprograms (functions, and subroutines), types (including structure, union, pointer, array, and
enumeration types), variables, and arguments. Symbol names are case-sensitive and must match
the name as it appears in the object file.

The compilers add an underscore character, "_", to the beginning of each external identifier. On
UNIX systems, the PGI Fortran compilers also add an underscore to the end of each external
identifier. Therefore, if PGDBG is unable to locate a symbol as entered, it prepends an underscore
and tries again. If that fails, it adds an underscore to the end of the name and tries again. If that
fails, the leading underscore is stripped and the search is repeated. For example, if cfunc and
ffunc are C and Fortran functions, respectively, then the names for the symbols in the object file
are _cfunc and _ffunc_. PGDBG will accept cfunc, and _cfunc as names for _cfunc, and will
accept ffunc, _ffunc, and _ffunc_ as names for _ffunc_. Note however, that due to case-
sensitivity, FFUNC, _FFUNC, etc. are not accepted as names for _ffunc_.

The PGDBG Debugger 9

1.4.3 Scope Rules
Since several symbols may have the same name, scope rules are used to bind identifiers to
symbols. PGDBG uses a notion of search scope for looking up identifiers. The search scope is a
symbol which represents a function, a source file, or global scope. When the user enters a name,
PGDBG first tries to find the symbol in the search scope. If the symbol is not found, the
containing scope, (source file, or global) is searched, and so forth, until either the symbol is
located or the global scope is searched and the symbol is not found.

Normally, the search scope will be the same as the current scope, which is the function where
execution is currently stopped. The current scope and the search scope are both set to the current
function each time execution of the target program stops. However, the enter command changes
the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a
function with a local variable i, then:

f@i

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file
name with this operator, for example:

"xyz.c"@i

represents the variable i defined in file xyz.c.

1.4.4 Register Symbols

In order to provide access to the system registers, PGDBG builds symbols for them. Register
names generally begin with $ to avoid conflicts with program identifiers. Each register symbol has
a type associated with it, and registers are treated like global variables of that type, except that
their address may not be taken. See Section 1.10 Commands Summary for a complete list of the
register symbols.

10 Chapter 1

1.4.5 Source Code Locations

Some commands need to reference code locations. Source file names must be enclosed in double
quotes. Source lines are indicated by number, and may be qualified by a quoted filename using the
scope qualifier operator.

Thus:

break 37

sets a breakpoint at line 37 of the current source file, and

break "xyz.c"@37

sets a breakpoint at line 37 of the source file xyz.c.

A range of lines is indicated using the range operator ":". Thus,

list 3:13

lists lines 3 through 13 of the current file, and

list "xyz.c"@3:13

lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is
not always obvious whether a numeric constant should be interpreted as a line number or an
address. The description for these commands says which interpretation is used. However, the
conversion commands line, and addr convert a constant to a line, or to an address respectively.
For example:

{line 37}

means "line 37",

{addr 0x1000}

means "address 0x1000" , and

{addr {line 37}}

means "the address associated with line 37" , and

{line {addr 0x1000}}

The PGDBG Debugger 11

means "the line associated with address 0x1000".

1.4.6 Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained
by a lexical block indicates the start scope of the lexical block.

Below variable var is declared in the lexical block starting at line 5. The lexical block has the
unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@5 has the unique
name "lex.c"@main@5@var.

For Example:

lex.c:
main()
{
 int var = 0;
 {
 int var = 1;
 printf("var %d\n",var);
 }
 printf("var %d\n",var)
}

pgdbg> n
Stopped at 0x8048b10, function main, file
/home/pete/pgdbg/bugs/workon3/ctest/lex.c, line 6
#6: printf("var %d\n",var);
pgdbg> print var
1
pgdbg> which var
"lex.c"@main@5@var
pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var
pgdbg> names "lex.c"@main@5
var = 1

12 Chapter 1

1.4.7 Statements

Although input is processed one line at a time, statement constructs allow multiple commands per
line, and conditional and iterative execution. The statement constructs roughly correspond to the
analogous C language constructs. Statements may be of the following forms.

Simple Statement: A command, and its arguments. For example:

print i

Block Statement: One or more statements separated by semicolons and enclosed in curly braces.
Note: these may only be used as arguments to commands or as part of if or while statements. For
example:

if(i>1) {print i; step }

If Statement: The keyword if followed by a parenthesized expression, followed by a block
statement, followed by zero or more else if clauses, and at most one else clause. For example:

if(i>j) {print i} else if(i<j) {print j} else {print "i==j"}

While Statement: The keyword while followed by a parenthesized expression, followed by a block
statement. For example:

while(i==0) {next}

Multiple statements may appear on a line by separating them with a semicolon. For example:

break main; break xyz; cont; where

sets breakpoints in functions main and xyz, continues, and prints the new current location. Any
value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. See Section 1.15.17 Parallel
Statements for details.

1.4.8 Events

Breakpoints, watchpoints and other mechanisms used to define the response to certain conditions,
are collectively called events.

• An event is defined by the conditions under which the event occurs, and by the action taken
when the event occurs.

The PGDBG Debugger 13

• A breakpoint occurs when execution reaches a particular address. The default action for a
breakpoint is simply to halt execution and prompt the user for commands.

• A watchpoint occurs when the value of an expression changes.

The default action is to print the new value of the expression, and prompt the user for commands.
By adding a location, or a condition, the event can be limited to a particular address or function, or
may occur only when the condition is true. The action to be taken when an event occurs can be
defined by specifying a command list.

PGDBG supports four basic commands for defining events. Each command takes a required
argument and may also take one or more optional arguments. The basic commands are break,
watch, track and do. The command break takes an argument specifying a breakpoint location.
Execution stops when that location is reached. The watch command takes an expression argument.
Execution stops and the new value is printed when the value of the expression changes.

The track command is like watch except that execution continues after the new value is printed.
The do command takes a list of commands as an argument. The commands are executed whenever
the event occurs.

The optional arguments bring flexibility to the event definition. They are:

at line Event occurs at indicated line.

at addr Event occurs at indicated address.

in function Event occurs throughout indicated function.

if (condition)
Event occurs only when condition is true.

do {commands}
When event occurs execute commands.

The optional arguments may appear in any order after the required argument and should not be
delimited by commas. For example:

watch i at 37 if(y>1)

This event definition says that whenever execution is at line 37, and the value of i has changed
since the last time execution was at line 37, and y is greater than 1, stop and print the new value of
i.

do {print xyz} in f

14 Chapter 1

This event definition says that at each line in the function f print the value of xyz.

break func1 if (i==37) do {print a[37]; stack}

This event definition says that each time the function func1 is entered and i is equal to 37, then
the value of a[37] should be printed, and a stack trace should be performed.

Event commands that do not explicitly define a location will occur at each source line in the
program. For example:

do {where}

prints the current location at the start of each source line, and

track a.b

prints the value of a.b at the start of each source line if the value has changed.

Events that occur at every line can be useful, but to perform them requires single-stepping the
target program (this may slow execution considerably). Restricting an event to a particular address
causes minimal impact on program execution speed, while restricting an event to a single function
causes execution to be slowed only when that function is executed.

PGDBG supports instruction level versions of several commands (for example breaki, watchi,
tracki, and doi). The basic difference in the instruction version is that these commands will
interpret integers as addresses rather than line numbers, and events will occur at each instruction
rather than at each line.

When multiple events occur at the same location, all event actions will be taken before the prompt
for input. Defining event actions that resume execution is allowed but discouraged, since
continuing execution may prevent or defer other event actions. For example:

break 37 do {continue}

break 37 do {print i}

This creates an ambiguous situation. It's not clear whether i should ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and
other commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example:

break 37

sets a breakpoint at line 37 in the current file.

The PGDBG Debugger 15

track i

will track the value of whatever variable i is currently in scope. If i is a local variable then it is
wise to add a location modifier (at or in) to restrict the event to a scope where i is defined.

Scope qualifiers can also specify lines or variables that are not currently in scope. Events can be
parallelized across multiple threads of execution. See Section 1.15.16 Parallel Events for details.

1.4.9 Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, and
commands if they return values, and operators. Table 1-1 shows the C language operators that are
supported. The operator precedence is the same as in the C language.

To use a value returned by a command in an expression, the command and arguments must be
enclosed in curly braces. For example:

break {pc}+8

invokes the pc command to compute the current address, adds 8 to it, and sets a breakpoint at that
address. Similarly, the following command compares the start address of the current function, with
the start address of function xyz, and prints the value 1, if they are equal and 0 otherwise.

print {addr {func}}=={addr xyz}

The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same
as the C language field selection operators "." , and "->" .

PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges.
For example,

print a[1:10]

prints elements 1 through 10 of the array a, and

list 5:10

lists source lines 5 through 10, and

list "xyz.c"@5:10

lists lines 5 through 10 in file xyz.c. The precedence of ':' is between '||' and '=' .

16 Chapter 1

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.

hi is the array or range upper bound for this expression.

step is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set. See
Section 1.15.8 Current vs. Prefix P/t-set for details.

 Table 1-1: PGDBG Operators

Operator Description Operator Description

* indirection <= less than or equal

. direct field selection >= greater than or
equal

-> indirect field selection != not equal

[] array index && logical and

() function call || logical or

& address of ! logical not

+ add | bitwise or

 (type) cast & bitwise and

- subtract ~ bitwise not

/ divide ^ bitwise exclusive
or

* multiply << left shift

= assignment >> right shift

== comparison

<< left shift

>> right shift

The PGDBG Debugger 17

1.5 Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program, and passes
them on according to that signal's disposition maintained by PGDBG (see the catch, ignore
commands).

If a thread runs into a busy loop or if the program runs into deadlock, control-C over the
debugging command line to interrupt the threads. This causes SIGINT to be sent to all threads. By
default PGDBG does not relay SIGINT to any of the threads, so in most cases program behavior is
not affected.

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads
(calling omp_set_num_threads(), or entering a parallel region) may kill some of the threads if the
signal is sent before each thread is fully initialized. Avoid sending SIGINT in these situations.
When the number of threads employed by a program is large, thread initialization may take a
while.

Sending SIGINT (control-C) to a running MPI program is not recommended. See Section 1.17.5
MPI Listener Processes for details.

1.5.1 Signals Used Internally by PGDBG

SIGTRAP indicates a breakpoint has been hit. A message is displayed whenever a thread hits a
breakpoint. SIGSTOP is used internally by PGDBG. Its use is mostly invisible to the user.
Changing the disposition of these signals in PGDBG will result in undefined behavior.

Reserved Signals: On Linux, the thread library uses SIGRT1, SIGRT3 to communicate among
threads internally. In the absence of real-time signals in the kernel, SIGUSR1, SIGUSR2 are used.
Changing the disposition of these signals in PGDBG will result in undefined behavior.

18 Chapter 1

1.6 Debugging Fortran

In order to create symbolic information for debugging, invoke your PGI Fortran compiler with the
–g option. Fortran type declarations are printed using Fortran type names, not C type names. The
only exception is Fortran character types, which are treated as arrays of C characters.

1.6.1 Arrays

Large arrays, arrays with lower dimensions, and adjustable arrays are all supported. Fortran array
elements and ranges should be accessed using parentheses, rather than square brackets.

1.6.2 Operators

Only those operators that exist in the C language may be used in expressions. In particular .eq.,
.ne., and so forth are not supported. The analogous C operators =, !=, etc. must be used instead.
Note that the precedence of operators matches the C language, which may in some cases be
different than for Fortran.

1.6.3 Name of Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the program
statement. Otherwise, the name of the main routine is __unnamed_. A function symbol named
MAIN is defined with start address equal to the start of the main routine. As a result,

break MAIN

can always be used to set a breakpoint at the start of the main routine.

1.6.4 Fortran Common Blocks

Each subprogram that defines a common block will have a local static variable symbol to define
the common. The address of the variable will be the address of the common block. The type of the
variable will be a locally defined structure type with fields defined for each element of the
common. The name of the variable will be the common name, if the common has a name, or
BLNK otherwise.

The PGDBG Debugger 19

For each member of the common block, a local static variable is declared which represents the
common variable. Thus given declarations:

common /xyz/ integer a, real b

then the entire common can be printed out using,

print xyz

and the individual elements can be accessed by name as in,

print a, b

1.6.5 Nested Subroutines

To reference a nested subroutine you must qualify its name with the name of its enclosing function
using the scoping operator @.

For example:

subroutine subtest (ndim)
integer(4), intent(in) :: ndim
integer, dimension(ndim) :: ijk
call subsubtest ()
contains
 subroutine subsubtest ()
 integer :: I
 i=9
 ijk(1) = 1
 end subroutine subsubtest
 subroutine subsubtest2 ()
 ijk(1) = 1
 end subroutine subsubtest2
end subroutine subtest
program testscope
integer(4), parameter :: ndim = 4
call subtest (ndim)
end program testscope

pgdbg> break subtest@subsubtest
breakpoint set at: subsubtest line: 8 in "ex.f90" address: 0x80494091
pgdbg> names subtest@subsubtest
i = 0
pgdbg> decls subtest@subsubtest
arguments:

20 Chapter 1

variables:
integer*4 i;
pgdbg> whereis subsubtest
function: "ex.f90"@subtest@subsubtest

1.6.6 Fortran 90 Modules

To access a member mm of a Fortran 90 module M you must qualify mm

with M using the scoping operator @. If the current scope is M the qualification can be omitted.

For example:

module M
implicit none
real mm
contains
subroutine stub
print *,mm
end subroutine stub
end module M

program test
use M
implicit none
call stub()
print *,mm
end program test

pgdbg> Stopped at 0x80494e3, function MAIN, file M.f90, line 13
#13: call stub()
pgdbg> which mm
"M.f90"@m@mm
pgdbg> print "M.f90"@m@mm
0
pgdbg> names m
mm = 0
stub = "M.f90"@m@stub
pgdbg> decls m
real*4 mm;
subroutine stub();
pgdbg> print m@mm
0
pgdbg> break stub

The PGDBG Debugger 21

breakpoint set at: stub line:6 in "M.f90" address: 0x8049446 1
pgdbg> c
Stopped at 0x8049446, function stub, file M.f90, line 6
Warning: Source file M.f90 has been modified more recently than object
file
#6: print *,mm
pgdbg> print mm
0
pgdbg>

1.7 Debugging C++

In order to create symbolic information for debugging, invoke your PGI C++ compiler with the
–g option.

Calling C++ Instance Methods

To call a C++ instance method, the object must be explicitly passed as the first parameter to the
call. For example, given the following definition of class Person and the appropriate
implementation of its methods:

 class Person {
 public:
 char name[10];
 Person(char * name);
 void print();
 };

 main(){
 Person * pierre;
 pierre = new Person("Pierre");
 pierre.print();
 }

To call the instance method print on object pierre, use the following syntax:

 pgdbg> call Person::print(pierre)

Notice that pierre is explicitly passed into the method, and the class name must also be
specified.

22 Chapter 1

1.8 Core Files

Some implementations of PGDBG are capable of interpreting core files. The debugger invocation
for these systems has been modified as follows:

pgdbg [-core corefile] program arg1 ... argn

Using the –core option an informational message is printed on invocation indicating that the core
file is being read. Before any data from the core file can be accessed, you must use the cont
command. The debugger will then indicate that it is stopped at the location of the violation that
caused the core file to be generated. At this point, memory, registers and instruction space may be
displayed just as if the program were active and breakpoints may be set.

While most execution related commands are ignored, the run command causes the program to be
loaded and executed. Thereafter, PGDBG will behave just as if it had been invoked without the
–core option.

1.9 PGDBG Commands

This section describes the PGDBG command set in detail. Section 1.9 Commands presents a table
of all the debugger commands, with a summary of their syntax.

1.9.1 Commands

Command names may be abbreviated as indicated. Some commands accept a variety of
arguments. Arguments contained in [and] are optional. Two or more arguments separated by |
indicate that any one of the arguments is acceptable. An ellipsis (...) indicates an arbitrarily long
list of arguments. Other punctuation (commas, quotes, etc.) should be entered as shown. Argument
names appear in italics and are chosen to indicate what kind of argument is expected. For
example:

lis[t] [count | lo:hi | function | line,count]

indicates that the command list may be abbreviated to lis, and that it will accept either no
argument, an integer count, a line range, a function name, or a line and a count.

1.9.1.1 Process Control

 The following commands, together with the breakpoints described in the next section, let you
control the execution of the target program. PGDBG allows you to easily group and control
multiple threads and processes. See Section 1.15.11 Process and Thread Control for more details.

The PGDBG Debugger 23

 c[ont]

Continue execution from the current location. This command may also be used to begin execution
of the program at the beginning of the session.

de[bug]

Print the name and arguments of the program being debugged.

halt

Halt the running process or thread.

n[ext] [count]

Stop after executing one source line in the current function. This command steps over called
functions. The count argument stops execution after executing count source lines. In a parallel
region of code, next applies only to the currently active thread.

nexti [count]

Stop after executing one instruction in the current function. This command steps over called
functions. The count argument stops execution after executing count instructions. In a parallel
region of code, nexti applies only to the currently active thread.

proc [number]

Set the current thread to number. When issued with no argument, proc lists the current program
location of the current thread of the current process. See Section 1.14.4 Process-Parallel
Debugging for how processes are numbered.

procs

Print the status of all live processes.

q[uit]

Terminate the debugging session.

rer[un]
rer[un] [arg0 arg1 ... argn] [< inputfile] [> outputfile]

24 Chapter 1

Works like run except if no args are specified, none are used.

ru[n]
ru[n] [arg0 arg1 ...argn] [< inputfile] [> outputfile]

Execute program from the beginning. If arguments arg0, arg1, .. are specified, they are set up as
the command line arguments of the program. Otherwise, the arguments for the previous run
command are used. Standard input and standard output for the target program can be redirected
using < or > and an input or output filename.

s[tep]
s[tep] count
s[tep] up

Stop after executing one source line. This command steps into called functions. The count
argument, stops execution after executing count source lines. The up argument stops execution
after stepping out of the current function. In a parallel region of code, step applies only to the
currently active thread.

stepi
stepi count
stepi up

Stop after executing one instruction. This command steps into called functions. The count
argument stops execution after executing count instructions. The up argument stops the execution
after stepping out of the current function. In a parallel region of code, stepi applies only to the
currently active thread.

stepo[ut]

Stop after returning to the caller of the current function. This command sets a breakpoint at the
current return address, and does a continue. To work correctly, it must be possible to compute the
value of the return address. Some functions, particularly terminal functions at higher optimization
levels, may not set up a stack frame. Executing stepout from such a function will cause the
breakpoint to be set in the caller of the most recent function that set up a stack frame. This
command stops immediately upon return to the calling function. This means that the current
location may not be the start of a source line because multiple function calls may occur on a single
source line, and a user might want to stop after the first call. Users who want to step out of the
current function and continue to the start of the next source line should simply follow stepout with
next. In a parallel region of code, stepout applies only to the currently active thread.

sync

The PGDBG Debugger 25

synci

Advance process/thread to specific program location, ignoring user defined events that fire.

thread [number]

Set the active thread to number. When issued with no argument, thread lists the current program
location of the currently active thread. On Linux systems, number will be a 5-digit thread
identifier.

threads

Print a status of all live threads. NCPUS+1 live threads will be listed, where NCPUS is the
environment variable which specifies how many processes the program should use. One of the
threads is a master thread that is not used in computations. It will always be listed as waiting at
_fini.

wait

Return PGDBG prompt only after specific processes or threads stop.

1.9.1.2 Process-Thread Sets

The following commands deal with defining and managing process thread sets. See Section 1.15.9
P/t-set Commands for a general discussion of process-thread sets.

defset

Assign a name to a process/thread set. Define a named set. This set can later be referred to by
name. A list of named sets is stored by PGDBG.

focus

Set the target process/thread set for commands. Subsequent commands will be applied to the
members of this set by default

undefset

'undefine' a previously defined process/thread set. The set is removed from the list. The debugger-
defined p/t-set [all] can not be removed

viewset

26 Chapter 1

List the members of a process/thread set that currently exist as active threads

whichsets

List all defined p/t-sets to which the members of a process/thread set belongs

1.9.1.3 Events

The following commands deal with defining and managing events. See Section 1.4.8 Events for a
general discussion of events, and the optional arguments.

b[reak]
b[reak] line [if (condition)] [do {commands}]
b[reak] func [if (condition)] [do {commands}]

If no argument is specified, print the current breakpoints. Otherwise, set a breakpoint at the
indicated line or function. If a function is specified, and the function was compiled for debugging,
then the breakpoint is set at the start of the first statement in the function, that is, after the
function’s prologue code. If the function was not compiled for debugging, then the breakpoint is
set at the first instruction of the function, prior to any prologue code. This command interprets
integer constants as line numbers. To set a breakpoint at an address, use the addr command to
convert the constant to an address, or use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified condition
evaluates true. If do is specified with a command or several commands as an argument, the
command or commands are executed when the breakpoint occurs.

The following examples set breakpoints at line 37 in the current file, line 37 in file xyz.c, the first
executable line of function main, address 0xf0400608, the current line, and the current address,
respectively.

break 37
break "xyz.c"@37
break main
break {addr 0xf0400608}
break {line}
break {pc}

More sophisticated examples include:

break xyz if(xyz@n > 10)

This command stops when function xyz is entered only if the argument n is greater than 10.

The PGDBG Debugger 27

break 100 do {print n; stack}

This command prints the value of n and performs a stack trace every time line 100 in the current
file is reached.

breaki
breaki func [if (condition)] [do {commands}]
breaki addr [if (condition)] [do {commands}]

Set a breakpoint at the indicated address or function. If a function is specified, the breakpoint is set
at the first address of the function. This means that when the program stops at this breakpoint the
prologue code which sets up the stack frame will not yet have been executed, and hence, values of
stack arguments will not be correct. Integer constants are interpreted as addresses. To specify a
line, use the line command to convert the constant to a line number, or use the break command.

The if, and do arguments are interpreted as in the break command. The next examples set
breakpoints at address 0xf0400608, line 37 in the current file, line 37 in file xyz.c, the first
executable address of function main, the current line, and the current address, respectively:

breaki 0xf0400608
breaki {line 37}
breaki "xyz.c"@37
breaki main
breaki {line}
breaki {pc}

Similarly,

breaki 0x6480 if(n>3) do {print "n=", n}

stops and prints the new value of n at address 0x6480 only if n is greater than 3.

breaks

Display all the existing breakpoints.

catch
catch [sig:sig]
catch [sig [, sig...]]

With no arguments, print the list of signals being caught. With the : argument, catch the
specified range of signals. With a list, trap signals with the specified number.

28 Chapter 1

clear
clear all
clear func
clear line
clear addr {addr}

Clear all breakpoints at current location. Clear all breakpoints. Clear all breakpoints from first
statement in the specified function func. Clear breakpoints from line number line. Clear
breakpoints from the address addr.

del[ete] event-number
del[ete] 0
del[ete] all
del[ete] event-number [, event-number...]

Delete the event event-number or all events (delete 0 is the same as delete all). Multiple event
numbers can be supplied if they are separated by a comma.

disab[le] event-number
disab[le] all

Disable the indicated event event-number, or all events. Disabling an event definition suppresses
actions associated with the event, but leaves the event defined so that it can be used later.

do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in func [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression,
it defines a list of commands to be executed. Without the optional arguments at or in, the
commands are executed at each line in the program The at argument with a line specifies the
commands to be executed each time that line is reached. The in argument with a func specifies the
commands are executed at each line in the function. The if option has the same meaning as in
watch. If a condition is specified, the do commands are executed only when condition is true.

doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in func [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an
expression, it defines a list of commands to be executed. If an addr is specified, the commands are
executed each time that address is reached. If a function func is specified, the commands are

The PGDBG Debugger 29

executed at each line in the function. If neither is specified, the commands are executed at each
line in the program. The if option has the same meaning as in do above

enab[le] event-number | all

Enable the indicated event event-number, or all events.

hwatch addr [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a
particular address. The event is triggered by hardware when the byte at the given address is
written. This command is only supported on systems that provide the necessary hardware and
software support. Only one hardware watchpoint can be defined at a time.

If an if option is specified, the event will cause no action unless the expression is true. If a do
option is specified then the commands will be executed when the event occurs.

hwatchr[ead] addr [if (condition)] [do {commands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given
address is read. As with hwatch, system hardware and software support must exist for this
command to be supported. The if and do options have the same meaning as for hwatch.

hwatchb[oth] addr [if (condition)] [do {commands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the
given address is either read or written. As with hwatch, system hardware and software support
must exist for this command to be supported. The if and do options have the same meaning as for
hwatch.

ignore
ignore[sig:sig]
ignore [sig [, sig...]]

With no arguments, print the list of signals being ignored. With the : argument, ignore the
specified range of signals. With a list, ignore signals with the specified number.

stat[us]

Display all the event definitions, including an event number by which the event can be identified.

30 Chapter 1

stop var
stop at line [if (condition)][do {commands}]
stop in func [if (condition)][do {commands}]
stop if (condition)

Set a breakpoint at the indicated function or line. Break when the value of the indicated variable
var changes. The at keyword and a number specifies a line number. The in keyword and a
function name specifies the first statement of the specified function. With the if keyword, the
debugger stops when the condition condition is true.

stopi var
stopi at address [if (condition)][do {commands}]
stopi in func [if (condition)][do {commands}]
stopi if (condition)

Set a breakpoint at the indicated address or function. Break when the value of the indicated
variable var changes. The at keyword and a number specifies an address to stop at. The in
keyword and a function name specifies the first address of the specified function to stop at. With
the if keyword, the debugger stops when condition is true.

track expression [at line | in func] [if (condition)][do {commands}]

Define a track event. This command is equivalent to watch except that execution resumes after a
new value is printed.

tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an instruction level track event. This command is equivalent to watchi except that
execution resumes after the new value is printed.

trace var [if (condition)][do {commands}]
trace func [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in func [if (condition)][do {commands}]

Activate source line tracing when var changes. Activate source line tracing and trace when in
function func. With at, activate source line tracing to display the specified line each time it is
executed. With in, activate source line tracing to display the specified each source line when in the
specified function. If condition is specified, trace is on only if the condition evaluates to true. The
do keyword defines a list of commands to execute at each trace point. Use the command pgienv
speed secs to set the time in seconds between trace points. Use the clear command to remove
tracing for a line or function.

The PGDBG Debugger 31

tracei var [if (condition)][do {commands}]
tracei func [if (condition)][do {commands}]
tracei at addr [if (condition)][do {commands}]
tracei in func [if (condition)][do {commands}]

Activate instruction tracing when var changes. Activate instruction tracing when in function func.
With at, activate tracing to display the specified line each time it is executed. With the in keyword,
display instructions while in the specified function. Use the command pgienv speed secs to set the
time in seconds between trace points. Use the clear command to remove tracing for a line or
function.

unb[reak] line
unb[reak] func
unb[reak] all

Remove a breakpoint from the statement line. Remove a breakpoint from the function func.
Remove all breakpoints.

unbreaki addr
unbreaki func
unbreaki all

Remove a breakpoint from the address addr. Remove a breakpoint from the function func.
Remove all breakpoints.

wa[tch] expression
wa[tch] expression [if (condition)][do {commands}]
wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in func [if (condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of
the expression changes, the program stops and the new value is printed. If a particular line is
specified, the expression is only evaluated at that line. If a function func is specified, the
expression is evaluated at each line in the function. If no location is specified, the expression will
be evaluated at each line in the program. If a condition is specified, the expression is evaluated
only when the condition is true. If commands are specified, they are executed whenever the
expression is evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a
function or address is specified to ensure that the variable will only be evaluated when it is in
scope.

32 Chapter 1

Note: Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in options speeds up execution by reducing the amount of single-stepping and
expression evaluation that must be performed to watch the expression. For example:

watch i at 40

will barely slow program execution at all, while

watch i

will slow execution considerably.

watchi expression
watchi expression [if(condition)][do {commands}]
watchi expression at addr [if(condition)][do {commands}]
watchi expression in func [if(condition)][do {commands}]

Define an instruction level watch event. This is just like the watch command except that the at
option interprets integers as addresses rather than line numbers, and the expression is evaluated at
every instruction instead of at every line.

This command is useful if line number information is limited. It causes programs to execute more
slowly than watch.

when do {commands} [if (condition)]
when at line do {commands} [if (condition)]
when in func do {commands} [if (condition)]

Execute command at every line in the program. Execute commands at specified line in the
program. Execute command in the specified function. If the optional condition is specified,
commands are executed only when the expression evaluates to true.

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in func do {commands} [if (condition)]

Execute commands at each address in the program. If an addr is specified, the commands are
executed each time the address is reached. If a function func is specified, the commands are
executed at each line in the function. If the optional condition is specified, commands are executed
whenever the expression is evaluated true.

Events can be parallelized across multiple threads of execution. See Section 1.15.16 Parallel

The PGDBG Debugger 33

Events for details.

1.9.1.4 Program Locations

This section describes PGDBG program locations commands.

arri[ve]

Print location information and update GUI markers for the current location.

cd [dir]

Change to the $HOME directory or to the specified directory dir.

dis[asm]
dis[asm] count
dis[asm] lo:hi
dis[asm] func
dis[asm] addr, count

Disassemble memory. If no argument is given, disassemble four instructions starting at the current
address. If an integer count is given, disassemble count instructions starting at the current address.
If an address range is given, disassemble the memory in the range. If a function name is given,
disassemble the entire function. If the function was compiled for debug, and source code is
available, the source code will be interleaved with the disassembly. If an address and a count are
given, disassemble count instructions starting at address addr.

edit
edit filename
edit func

If no argument is supplied, edit the current file starting at the current location. With a filename
argument, edit the specified file filename. With the func argument, edit the file containing function
func. This command uses the editor specified by the environment variable $EDITOR.

file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument,
print the current file.

lines function

34 Chapter 1

Print the lines table for the specified function.

lis[t]
lis[t] count
lis[t] line,num
lis[t] lo:hi
lis[t] function

With no argument, list 10 lines centered about the current source line. If a count is given, list
count lines centered about the source line. If a line and count are given, list number lines starting
at line number line. For the dbx environment, this option lists lines from start to number. If a line
range is given, list the indicated source lines in the current source file (this option is not valid in
the dbx environment). If a function name is given, list the source code for the indicated function.

pwd

Print the current working directory.

stack[trace] [count]

Print a stacktrace. For each live function print the function name, source file, line number, current
address. This command also prints the names and values of the arguments, if available. If a count
is specified, display a maximum of count stack frames.

stackd[ump] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for
each live function. This command is a machine-level version of the stacktrace command. If a
count is specified, display a maximum of count stack frames.

w[here] [count]

Print the address, function, source file and line number for the current location. If count is
specified, print a maximum of count live functions on the stack.

/
/ [string] /

Search forward for a string string of characters in the current file. With just /, search for the next
occurrence of string in the current file.

?

The PGDBG Debugger 35

?[string] ?

Search backward for a string string of characters in the current file. With just ?, search for the
previous occurrence of string in the current file.

1.9.1.5 Printing and Setting Variables

This section describes PGDBG commands used for printing and setting variables.

p[rint] exp1 [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each
line of command input. Values are printed in a format appropriate to their type. For values of
structure type, each field name and value is printed. Character pointers are printed as a hex address
followed by character string.

Character string constants print out literally. For example:

pgdbg> print "The value of i is ", i
The value of i is 37

The array sub-range operator : prints a range of an array. The following example prints elements 0
through 10 of the array a:

print a[0:10]

printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. Behaves like the C library function
printf. For example:

pgdbg> printf "f[%d]=%G",i,f[i]
f[3]=3.14

The pgienv command with the stringlen argument sets the maximum number of characters that
will print with a print command. For example, the char declaration below:

char *c="a whole bunch of chars over 1000 chars long....";

A print c command will only print the first 512 (or stringlen) bytes. Normally, the printing
occurs until a NULL is reached, but without some limit, the printing may never end.

36 Chapter 1

asc[ii] exp [,...exp]

Evaluate and print as an ascii character. Control characters are prefixed with the '^' character; that
is, .3 prints as ^c. Otherwise, values that can not be printed as characters are printed as integer
values prefixed by `\'. for example,. 250 prints as \250.

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in binary.

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display
display exp [,...exp]

Without arguments, list the expressions set to display at breakpoints. With an argument or several
arguments, print expression exp at every breakpoint. See the description for undisplay.

hex exp [,...exp]

Evaluate and print the expressions. Integer values are printed in hex.

oct exp [,...exp]

Evaluate and print the expressions. Integer values are printed in octal.

set var=expression

Set variable var to the value of expression.

str[ing] exp [,...exp]

For each expression, evaluate, treat the result as a character pointer, and fetch and print a null
terminated string from that address. This command will fetch a maximum of 70 characters.

undisplay 0
undisplay all
undisplay exp [,...exp]

Remove all expressions being printed at breakpoints. With an argument or several arguments,

The PGDBG Debugger 37

remove the expression exp from the list of display expressions.

1.9.1.6 Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

as[sign] var = exp

Assign the value of the expression exp to the specified variable var.

call func [(exp,...)]

Call the named function. C argument passing conventions are used. Breakpoints encountered
during execution of the function are ignored. If a signal is caught during execution of the function,
execution will stop, but continued execution may produce unpredictable results. The return value,
is assumed to be an integer, and is returned by this command. Fortran functions and subroutines
can be called, but the argument values will be passed according to C conventions.

decl[aration] name

Print the declaration for the symbol, based on the type of the symbol in the symbol table. The
symbol must be a variable, argument, enumeration constant, function, a structure, union, enum, or
a typedef tag. For example, given declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct abc *c;}val;

The commands,

decl I
decl iar
decl val
decl abc

will respectively print out as

int i

int iar[10]

struct abc val

struct abc {
 int a;

38 Chapter 1

 char b[4];
 struct abc *c;
};

entr[y]
entr[y] func

Return the address of the first executable statement in the program or specified function. This is
the first address after the function's prologue code.

lv[al] expr

Return the lvalue of the expression expr. The lvalue of an expression is the value it would have if
it appeared on the left hand of an assignment statement. Roughly speaking, an lvalue is a location
to which a value can be assigned. This may be an address, a stack offset, or a register.

rv[al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if
it appeared on the right hand of an assignment statement. The type of the expression may be any
scalar, pointer, structure, or function type.

siz[eof] name

Return the size, in bytes, of the variable type name.

type expr

Return the type of the expression. The expression may contain structure reference operators (. ,
and ->), dereference (*), and array index ([]) expressions. For example, given declarations
shown previously, the commands:

type I
type iar
type val
type val.a
type val.abc->b[2]

produce the following output:

int

int [10]

struct abc

The PGDBG Debugger 39

int

char

whatis
whatis name

With no arguments, print the declaration for the current function. With argument name, print the
declaration for the symbol name.

1.9.1.7 Scope

The following commands deal with program scope. See Section 1.4.3 Scope Rules for a discussion
of scope meaning and conventions.

decls
decls func
decls "sourcefile"
decls {global}

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for global scope.

down [number]

Enter scope of function down one level or number levels on the call stack.

en[ter]
en[ter] func
en[ter] "sourcefile"
en[ter] {global}

Set the search scope to be the indicated symbol, which may be a function, source file or global. If
no scope is specified use the search scope. The default enter with no argument is enter global.

files

Return the list of the files that make up the object file.

glob[al]

40 Chapter 1

Return a symbol representing global scope. This command can also be used with the scope
operator @ to specify symbols at global scope.

names
names func
names "sourcefile"
names {global}

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the
search scope.

sco[pe]

Return a symbol for the search scope. The search scope is set to the current function each time
program execution stops. It may also be set using the enter command. The search scope is always
searched first for symbols.

up [number]

Enter scope of function up one level or number levels on the call stack.

whereis name

Print all declarations for name.

which name

Print full scope qualification of symbol name.

1.9.1.8 Register Access

System registers can be accessed by name. See Section 1.4.4 Register Symbols for the complete
set of registers. A few commands exist to access common registers.

fp

Return the current value of the frame pointer.

pc

Return the current program address.

The PGDBG Debugger 41

regs

Print a formatted display of the names and values of the integer, float, and double registers.

ret[addr]

Return the current return address.

sp

Return the current value of the stack pointer.

1.9.1.9 Memory Access

The following commands display the contents of arbitrary memory locations.

cr[ead]addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dr[ead]addr

Fetch and return a 64 bit double from the specified address.

du[mp] address, count, "format-string"

This command dumps a region of memory according to a printf-like format descriptor. Starting at
the indicated address, values are fetched from memory and displayed according to the format
descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.

The meaning of the recognized format descriptors is as follows:

%d, %D, %o, %O, %x, %X, %u, %U
Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is 32 bits. The size
of the item read can be modified by either inserting 'h', or 'l' before the format character to indicate
half (16) bits or long (32 bits). Alternatively, a 1, 2, or 4 after the format character can be used to
specify the number of bytes to read.

42 Chapter 1

%c
Fetch and print a character.

%f, %F, %e, %E, %g, %G
Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.

%s
Fetch and print a null terminated string.

%p<format-chars>
Interpret the next four bytes as a pointer to an item specified by the following format characters.
The pointed-to item is fetched and displayed. Examples:

%px
pointer to hex int.

%ps
pointer to string.

%pps
pointer to pointer to string.

%i
Fetch an instruction and disassemble it.

%w, %W
Display address about to be dumped.

%z<n>, %Z<n>, %z<-n>, %Z<-n>
Display nothing but advance or decrement current address by n bytes.

%a<n>, %A<n>
Display nothing but advance current address as needed to align modulo n.

fr[ead]addr

Fetch and return a 32 bit float from the specified address.

ir[ead] addr

Fetch and return a 32-bit signed integer from the specified address.

The PGDBG Debugger 43

sr[ead]addr

Fetch and return a 16-bit signed integer from the specified address.

1.9.1.10 Conversions

The commands in this section are useful for converting between different kinds of values. These
commands accept a variety of kinds of arguments, and return a value of particular kind.

ad[dr]
ad[dr] n
ad[dr] line
ad[dr] func
ad[dr] var
ad[dr] arg

Create an address conversion under these conditions:

• If an integer is given return an address with the same value.

• If a line is given, return the address corresponding to the start of that line.

• If a function is given, return the first address of the function.

• If a variable or argument is given, return the address where that variable or argument is
stored.

For example:

breaki {line {addr 0x22f0}}

func[tion]
func[tion] addr
func[tion] line

Return a function symbol. If no argument is specified, return the current function. If an address is
given, return the function containing that address. An integer argument is interpreted as an
address. If a line is given, return the function containing that line.

lin[e]
lin[e] n
lin[e] func

44 Chapter 1

lin[e] addr

Create a source line conversion. If no argument is given, return the current source line. If an
integer n is given, return it as a line number. If a function func is given, return the first line of the
function. If an address addr is given, return the line containing that address.

For example, the following command returns the line number of the specified address:

line {addr 0x22f0}

1.9.1.11 Miscellaneous

The following commands make using the debugger easier.

al[ias]
al[ias] name
al[ias] name string

Create or print aliases. If no arguments are given print all the currently defined aliases. If just a
name is given, print the alias for that name. If a name and string, are given, make name an alias for
string. Subsequently, whenever name is encountered it will be replaced by string. Although string
may be an arbitrary string, name must not contain any blanks.

For example:

alias xyz print "x= ",x,"y= ",y,"z= ",z; cont

creates an alias for xyz. Now whenever xyz is typed, PGDBG will respond as though the
following command was typed:

print "x= ",x,"y= ",y,"z= ",z; cont

dir[ectory] [pathname]

Add the directory pathname to the search path for source files. If no argument is specified, the
currently defined directories are printed. This command exists so that users can debug programs
even when some or all of the program source files are in a directory other than the user’s current
directory. For example:

dir morestuff

adds the directory morestuff to the list of directories to be searched. Now, source files stored in

The PGDBG Debugger 45

morestuff are accessible to PGDBG.

If the first character in pathname is ~, it will be substituted by $HOME.

help [command]

If no argument is specified, print a brief summary of all the commands. If a command name is
specified, print more detailed information about the use of that command.

history [num]

List the most recently executed commands. With the num argument, resize the history list to hold
num commands. History allows several characters for command substitution:

!! [modifier] Execute the previous command
! num [modifier] Execute command number num
!-num [modifier] Execute command -num from the most current

command
!string [modifier] Execute the most recent command starting with string
!?string? [modifier] Execute the most recent command containing string
^ Quick history command substitution

^old^new^<modifier> this is equivalent to !:s/old/new/

The history modifiers may be:

:s/old/new/ Substitute the value new for the value old.

:p Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number.
The command pgienv history on tells the debugger to display the history record number.

language

Print the name of the language of the current file.

log filename

Keep a log of all commands entered by the user and store it in the named file. This command may
be used in conjunction with the script command to record and replay debug sessions.

46 Chapter 1

nop[rint] exp

Evaluate the expression but do not print the result.

pgienv [command]

Define the debugger environment. With no arguments, display the debugger settings.

help pgienv Provide help on pgienv
[pgi]env Define the debugger environment
pgienv Display the debugger settings
pgienv dbx on Set the debugger to use dbx style commands
pgienv dbx off Set the debugger to use pgi style commands
pgienv history on Display the `history' record number with prompt
pgienv history off Do NOT display the `history' number with prompt
pgienv exe none Ignore executable’s symbolic debug information
pgienv exe symtab Digest executable’s native symbol table (typeless)
pgienv exe demand Digest executable’s symbolic debug information incrementally on

command
pgienv exe force Digest executable’s symbolic debug information when executable is

loaded
pgienv solibs none Ignore symbolic debug information from shared libraries
pgienv solibs symtab Digest native symbol table (typeless) from each shared library
pgienv solibs demand Digest symbolic debug information from shared libraries incrementally

on demand
pgienv solibs force Digest symbolic debug information from each shared library at load time
pgienv mode serial Single thread of execution (implicit use of p/t-sets)
pgienv mode thread Debug multiple threads (condensed p/t-set syntax)
pgienv mode process Debug multiple processes (condensed p/t-set syntax)
pgienv mode multilevel Debug multiple processes and multiple threads
pgienv omp [on|off] Enable/Disable OpenMP debug support.
pgienv prompt <name> Set the command line prompt to <name>
pgienv promptlen <num> Set maximum size of p/t-set portion of prompt
pgienv speed <secs> Set the time in seconds <secs> between trace points
pgienv stringlen <num> Set the maximum # of chars printed for `char *'s
pgienv logfile <name> Close logfile (if any) and open new logfile <name>
pgienv threadstop sync When one thread stops, the rest are halted in place
pgienv threadstop async Threads stop independently (asynchronously)
pgienv procstop sync When one process stops, the rest are halted in place
pgienv procstop async Processes stop independently (asynchronously)
pgienv threadstopconfig For each process, debugger sets thread stopping mode to 'sync' in serial

The PGDBG Debugger 47

auto regions, and 'async' in parallel regions
pgienv threadstopconfig
user

Thread stopping mode is user defined and remains unchanged by the
debugger.

pgienv procstopconfig
auto

Not currently used.

pgienv procstopconfig
user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none prompt available immediatly; no wait for running threads
pgienv threadwait any prompt available when at least a single thread stops
pgienv threadwait all prompt available only after all threads have stopped
pgienv procwait none prompt available immediately; no wait for running processes
pgienv procwait any prompt available when at least a single process stops
pgienv procwait all prompt available only after all processes have stopped
pgienv verbose <bitmask> Choose which debug status messages to report. Accepts an integer valued

bit mask of the following values:
ο 0x1 - Standard messaging (default). Report status information

on current process/thread only.

ο 0x2 - Thread messaging. Report status information on all
threads of (current) processes.

ο 0x4 - Process messaging. Report status information on all
processes.

ο 0x8 - SMP messaging (default). Report SMP events.

ο 0x16 - Parallel messaging (default). Report parallel events.

ο 0x32 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information
(e.g. STABS, DWARF). Pass 0x0 to disable all messages.

rep[eat] [first, last]
rep[eat] [first,:last:n]
rep[eat] [num]
rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num argument,
re-execute the command number num, or with -num, the last num commands. With the first and
last arguments, re-execute commands number first to last (optionally n times).

48 Chapter 1

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. If you
use ~ before the filename, this is expanded to the value of $HOME.

setenv name
setenv name value

Print value of environment variable name. With a specified value, set name to value.

shell [arg0, arg1,... argn]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell is sh). If no
arguments are specified, an interactive shell is invoked, and executes until a "^D" is entered.

sle[ep] [time]

Pause for time seconds or one second if no time is specified.

sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. If you
use ~ before the filename, this is expanded to the value of $HOME.

unal[ias] name

Remove the alias definition for name, if one exists.

use [dir]

Print the current list of directories or add dir to the list of directories to search. If the first character
in pathname is ~, it will be substituted by $HOME.

The PGDBG Debugger 49

1.10 Commands Summary

This section contains a brief summary of the PGDBG debugger commands. For more detailed
information on a command, select the hyperlink under the selection category.

 Table 1-2: Debugger Commands
addr next undefset
assign nexti undisplay
catch pgienv up
cd pwd use
clear proc [number] viewset
debug procs wait
defset repeat watchi
delete set whatis
display setenv when
down shell wheni
dump sizeof where
edit source whereis
entry step which
file stepi whichsets
files stop /
focus sync ?
halt synci !
history stopi ^
ignore thread
language threads
lines trace
list tracei

50 Chapter 1

1.10.1 Command Summary

For more detailed information on a command, select the hyperlink under the Section category.

 Table 1-3: PGDBG Commands
Name Arguments Section

arri[ve] 1.9.1.4 Program Locations

ad[dr] [n | line | func | var | arg] 1.9.1.10 Conversions

al[ias] [name [string]] 1.9.1.11 Miscellaneous

asc[ii] exp [,...exp] 1.9.1.5 Printing and Setting
Variables

as[sign] var=exp 1.9.1.6 Symbols and
Expressions

bin exp [,...exp] 1.9.1.5 Printing and Setting
Variables

b[reak] [line | func] [if (condition)] [do
{commands}]

1.9.1.3 Events

breaki [addr | func] [if (condition)] [do
{commands}]

1.9.1.3 Events

breaks 1.9.1.3 Events

call func [(exp,...)] 1.9.1.6 Symbols and
Expressions

catch [number [,number...]] 1.9.1.3 Events

cd [dir] 1.9.1.4 Program Locations

clear [all | func | line | addr {addr}] 1.9.1.3 Events

c[ont] 1.9.1.1 Process Control

The PGDBG Debugger 51

Name Arguments Section

cr[ead] addr 1.9.1.9 Memory Access

de[bug] 1.9.1.1 Process Control

dec exp [,...exp] 1.9.1.5 Printing and Setting
Variables

decl[aration] name 1.9.1.6 Symbols and
Expressions

decls [func | "sourcefile" | {global}] 1.9.1.7 Scope

del[ete] event-number | all | 0 | event-number [,.event-
number.]

1.9.1.3 Events

dir[ectory] [pathname] 1.9.1.11 Miscellaneous

dis[asm] [count | lo:hi | func | addr, count] 1.9.1.4 Program Locations

disab[le] event-number | all 1.9.1.3 Events

display exp [,...exp] 1.9.1.5 Printing and Setting
Variables

do {commands} [at line | in func] [if
(condition)]

1.9.1.3 Events

doi {commands} [at addr | in func] [if
(condition)]

1.9.1.3 Events

down 1.9.1.7 Scope

defset name [p/t-set] 1.9.1.2 Process-Thread Sets

dr[ead] addr 1.9.1.9 Memory Access

du[mp] address, count, "format-string" 1.9.1.9 Memory Access

edit [filename | func] 1.9.1.4 Program Locations

52 Chapter 1

Name Arguments Section

enab[le] event-number | all 1.9.1.3 Events

en[ter] func | "sourcefile" | {global} 1.9.1.7 Scope

entr[y] func 1.9.1.6 Symbols and
Expressions

fil[e] 1.9.1.4 Program Locations

files 1.9.1.7 Scope

focus [p/t-set] 1.9.1.2 Process-Thread Sets

fp 1.9.1.8 Register Access

fr[ead] addr 1.9.1.9 Memory Access

func[tion] [addr | line] 1.9.1.10 Conversions

glob[al] 1.15.10.3 Global
Commands

halt [command] 1.9.1.1 Process Control

he[lp] 1.9.1.11 Miscellaneous

hex exp [,...exp] 1.9.1.5 Printing and Setting
Variables

hi[story] [num] 1.9.1.11 Miscellaneous

hwatch addr [if (condition)] [do {commands}] 1.9.1.3 Events

hwatchb[oth] addr [if (condition)] [do {commands}] 1.9.1.3 Events

hwatchr[ead] addr [if (condition)] [do {commands}] 1.9.1.3 Events

ignore [number [,number...]] 1.9.1.3 Events

ir[ead] addr 1.9.1.9 Memory Access

The PGDBG Debugger 53

Name Arguments Section

language 1.9.1.11 Miscellaneous

lin[e] [n | func | addr] 1.9.1.10 Conversions

lines function 1.9.1.4 Program Locations

lis[t] [count | line,count | lo:hi | function] 1.9.1.4 Program Locations

log filename 1.9.1.11 Miscellaneous

lv[al] exp 1.9.1.6 Symbols and
Expressions

names [func | "sourcefile" | {global}] 1.9.1.7 Scope

n[ext] [count] 1.9.1.1 Process Control

nexti [count] 1.9.1.1 Process Control

nop[rint] exp 1.9.1.11 Miscellaneous

oct exp [,...exp] 1.9.1.5 Printing and Setting
Variables

pc 1.9.1.8 Register Access

pgienv [command] 1.9.1.11 Miscellaneous

p[rint] exp1 [,...expn] 1.9.1.5 Printing and Setting
Variables

printf "format_string", expr,...expr 1.9.1.5 Printing and Setting
Variables

proc [number] 1.9.1.1 Process Control

procs 1.9.1.1 Process Control

pwd 1.9.1.4 Program Locations

54 Chapter 1

Name Arguments Section

q[uit] 1.9.1.1 Process Control

regs 1.9.1.8 Register Access

rep[eat] [first, last] | [first: last:n] | [num] | [-num] 1.9.1.11 Miscellaneous

rer[un] [arg0 arg1 ... argn] [< inputfile] [>
outputfile]

1.9.1.1 Process Control

ret[addr] 1.9.1.8 Register Access

ru[n] [arg0 arg1 ... argn] [< inputfile] [>
outputfile]

1.9.1.1 Process Control

rv[al] expr 1.9.1.6 Symbols and
Expressions

sco[pe] 1.9.1.7 Scope

scr[ipt] filename 1.9.1.11 Miscellaneous

set var = ep 1.9.1.6 Symbols and
Expressions

setenv name | name value 1.9.1.11 Miscellaneous

sh[ell] arg0 [... argn] 1.9.1.11 Miscellaneous

siz[eof] name 1.9.1.6 Symbols and
Expressions

sle[ep] time 1.9.1.11 Miscellaneous

source filename 1.9.1.11 Miscellaneous

sp 1.9.1.8 Register Access

sr[ead] addr 1.9.1.9 Memory Access

stackd[ump] [count] 1.9.1.4 Program Locations

The PGDBG Debugger 55

Name Arguments Section

stack[trace] [count] 1.9.1.4 Program Locations

stat[us] 1.9.1.3 Events

s[tep] [count] [up] 1.9.1.1 Process Control

stepi [count] [up] 1.9.1.1 Process Control

stepo[ut] 1.9.1.1 Process Control

stop [at line | in func] [var] [if (condition)]
 [do {commands}]

1.9.1.3 Events

stopi [at addr | in func] [var] [if (condition)]
 [do {commands}]

1.9.1.3 Events

sync [func | line] 1.9.1.1 Process Control

synci [func | addr] 1.9.1.1 Process Control

str[ing] exp [,...exp] 1.9.1.5 Printing and Setting
Variables

thread number 1.9.1.1 Process Control

threads 1.9.1.1 Process Control

track expression [at line | in func] [if (condition)]
 [do {commands}]

1.9.1.3 Events

tracki expression [at addr | in func] [if (condition)]
 [do {commands}]

1.9.1.3 Events

trace [at line | in func] [var| func] [if (condition)]
 do {commands}

1.9.1.3 Events

tracei [at addr | in func] [var] [if (condition)]
 do {commands}

1.9.1.3 Events

56 Chapter 1

Name Arguments Section

type expr 1.9.1.6 Symbols and
Expressions

unal[ias] name 1.9.1.11 Miscellaneous

undefset [name | -all] 1.9.1.2 Process-Thread Sets

undisplay [all | 0 | exp] 1.9.1.5 Printing and Setting
Variables

unb[reak] line | func | all 1.9.1.3 Events

unbreaki addr | func | all 1.9.1.3 Events

up 1.9.1.7 Scope

use [dir] 1.9.1.11 Miscellaneous

viewset name 1.9.1.2 Process-Thread Sets

wait [any | all | none] 1.9.1.1 Process Control

wa[tch] expression [at line | in func] [if (condition)]
 [do {commands}]

1.9.1.3 Events

watchi expression [at addr | in func] [if(condition)]
 [do {commands}]

1.9.1.3 Events

whatis [name] 1.9.1.6 Symbols and
Expressions

when [at line | in func] [if (condition)] do
{commands}

1.9.1.3 Events

wheni [at addr | in func] [if(condition)] do
{commands}

1.9.1.3 Events

w[here] [count] 1.9.1.4 Program Locations

whereis name 1.9.1.7 Scope

The PGDBG Debugger 57

Name Arguments Section

whichsets [p/t-set] 1.9.1.2 Process-Thread Sets

which name 1.9.1.7 Scope

/ / [string] / 1.9.1.4 Program Locations

? ?[string] ? 1.9.1.4 Program Locations

! History modification 1.9.1.11 Miscellaneous

^ History modification 1.9.1.11 Miscellaneous

1.11 Register Symbols

This section describes the register symbols defined for X86 processors, and AMD64 processors
operating in compatibility or legacy mode.

58 Chapter 1

1.11.1 X86 Register Symbols

This section describes the X86 register symbols.

 Table 1-4: General Registers

Name Type Description

$edi unsigned General purpose

$esi unsigned General purpose

$eax unsigned General purpose

$ebx unsigned General purpose

$ecx unsigned General purpose

$edx unsigned General purpose

 Table 1-5: Floating-Point Registers

Name Type Description

$d0 - $d7 64-bit IEEE Floating-point

 Table 1-6: Segment Registers

Name Type Description

$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

The PGDBG Debugger 59

 Table 1-7: Special Purpose Registers

Name Type Description

$ebp 32-bit unsigned Frame pointer

$efl 32-bit unsigned Flags register

$eip 32-bit unsigned Instruction pointer

$esp 32-bit unsigned Privileged-mode stack pointer

$uesp 32-bit unsigned User-mode stack pointer

1.11.2 AMD64 Register Symbols

This section describes the register symbols defined for AMD64 processors operating in 64-bit
mode.

 Table 1-8: General Registers

Name Type Description

$r8 - $r15 64-bit unsigned General purpose

$rdi 64-bit unsigned General purpose

$rsi 64-bit unsigned General purpose

$rax 64-bit unsigned General purpose

$rbx 64-bit unsigned General purpose

$rcx 64-bit unsigned General purpose

$rdx 64-bit unsigned General purpose

 Table 1-9: Floating-Point Registers

Name Type Description

$d0 - $d7 64-bit IEEE Floating-point

60 Chapter 1

 Table 1-10: Segment Registers

Name Type Description

$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

 Table 1-11: Special Purpose Registers

Name Type Description

$ebp 64-bit unsigned Frame pointer

$rip 64-bit unsigned Instruction pointer

$rsp 64-bit unsigned Stack pointer

$eflags 64-bit unsigned Flags register

 Table 1-12: SSE Registers

Name Type Description

$mxcsr and status
register

64-bit unsigned SIMD floating-point
control

$xmm0 - $xmm15 Packed 4x32-bit IEEE SSE floating-point
registers

1.11.3 SSE Register Symbols

On AMD64, Pentium III, and compatible processors, an additional set of SSE (streaming SIMD
enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register contains four IEEE 745 compliant 32-bit single-precision floating-point values.
The PGDBG regs command reports these values individually in both hexadecimal and floating-
point format. PGDBG provides syntax to refer to these values individually, as members of a range,

The PGDBG Debugger 61

or all together.

The component values of each SSE register can be accessed using the same syntax that is used for
array subscripting. Pictorially, the SSE registers can be thought of as follows:

Bits: 127 96 95 65 63 32 31 0

$xmm0(3) $xmm0(2) $xmm0(1) $xmm0(0)

$xmm1(3) $xmm1(2) $xmm1(1) $xmm1(0)

$xmm7(3) $xmm7(2) $xmm7(1) $xmm7(0)

To access a $xmm0(3), the 32-bit single-precision floating point value that occupies bits 96 – 127
of SSE register 0, use the following PGDBG command:

 pgdbg> print $xmm0(3)

To set $xmm2(0) to the value of $xmm3(2), use the following PGDBG command:

 pgdbg> set $xmm2(3) = $xmm3(2)

You can also subscript SSE registers with range expressions to specify runs of consecutive
component values, and access an SSE register as a whole. For example, the following are legal
PGDBG commands:

 pgdbg> set $xmm0(0:1) = $xmm1(2:3)
 pgdbg> set $xmm6 = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmm0 to the values in elements 2 and 3
respectively in $xmm1. The second command above initializes all four elements of $xmm6 to the
constant 1.0/3.0 evaluated as a 32-bit floating-point constant.

1.12 X-Windows Graphical User Interface

The PGDBG X-Windows Graphical User Interface (GUI) is invoked on UNIX systems by default
using the command pgdbg. The GUI runs as a separate process and communicates with pgdbg.
There may be minor variations in the GUI from host to host, depending on the type of monitor
available, the settings for various defaults and the window manager used. The basic interface
across all systems remains the same with the exception of the differences tied to the display
characteristics and the window manager used.

62 Chapter 1

1.12.1 Main Window

Figure 1-1 shows the main window of pgdbg. This window appears when pgdbg starts and
remains throughout the debug session. If the debugger is licensed as a component of the CDK
(PGI Cluster Development Kit), a process grid is employed by the GUI, otherwise only a thread
grid will appear.

Figure 1-1: PGDBG Debugger Main Window

The PGDBG Debugger 63

The components of the main window are:

• Dialog Window − This window supports a dialog with the debugger. Commands entered in
this window are executed, and the results are displayed.

• Button Panel − This window displays buttons that can be clicked with the mouse as an
alternative to typing commands. Many buttons, such as the print button, will pass selected
text to the debugger as an argument to the command.

• Source Window − This window displays the source code for the current location. The current
location is marked by a footprint icon. Breakpoints may be set at any source line by clicking
the left mouse button in the margin to the left of the source line. The breakpoints are marked
by stop sign icons. An existing breakpoint may be cleared by clicking the left mouse button
on the stop sign icon.

• Process/Threads Grid − The PGDBG GUI lists all active processes in a process grid. Each
element of the process grid is labeled with a process ID and represents a single process. Each
element is a button that can be pushed to select a particular process as the current process. A
diamond indicates the current process. The thread grid depicts the threads of the current
process. When the current process is changed, the thread grid is refreshed to describe the
threads of the (new) current process, and the current thread is set to be the current thread of
that process. PGDBG displays the program context of the current thread (source position,
registers, disassembly, etc.).

1.12.2 Disassembly Window

The figure below shows the disassembly window of pgdbg. It is useful for debugging code at the
assembly code level. It is invoked by selecting DISASM in the main window’s Window pulldown
menu. By default, the current function is disassembled, and the current position is always
displayed and marked with the footprint icon.

64 Chapter 1

Figure 1-2: Disassembly Window

The components of the disassembly window are:

• Control Panel − The items in the control panel allow selection of what memory is to be
disassembled, and whether the display is to be updated automatically or on demand. A region
other than the current function can be displayed by placing a function name or address range
in the request field and clicking the SHOW button. The mode selection controls whether the
display is updated for each new location, or whether the display is only updated on demand.

• Disassembled Memory − This window displays a range of memory in disassembly format.
Each instruction is preceded by its address. Breakpoints may be set at any instruction by
clicking the left mouse button in the margin to the left of the instruction. If a function is being
disassembled, the source code for the function is interleaved with the disassembled
instructions.

1.12.3 Register Window
The register window displays the value of the processor’s registers. It is invoked by selecting
REGISTER in the main window’s Window pulldown menu.

The PGDBG Debugger 65

Figure 1-3: Register Window

• Control Panel − The display is updated each time the SHOW button is clicked. The mode item
controls whether the display is updated automatically for each new location or on demand.
The default is on demand.

1.12.4 Memory Window

The memory window displays a region of memory in a printf-like format descriptor. It is
essentially a graphical interface to the pgdbg dump command (see Section 1.14.3 Graphical
Features). It is invoked by selecting MEMORY in the main window’s Window pull-down menu.

66 Chapter 1

Figure 1-4: Memory Window

• Control Panel − The Address, Count, and Format fields correspond to the three
arguments to the pgdbg dump command. They specify the start address, repeat count, and
dump format. The display is updated each time the SHOW button is clicked. The mode item
controls whether the display is updated automatically for each new location or on demand.
The default is on demand.

• Memory Display − The display is simply the result of the pgdbg dump command. Starting at
Address, Count data items are read from memory according to the descriptor in the
Format field. Each line of output begins with the address being displayed in hexadecimal
format. This window is scrollable so that large regions of memory may be examined.

1.12.5 Custom Window

The custom window is useful for repeatedly executing a sequence of debugger commands. The
commands, entered in the control panel, can be executed at the click of a button or automatically
at each new location.

The PGDBG Debugger 67

Figure 1-5: Custom Window

• Control Panel − Each time the SHOW button is clicked, the text string in the command field is
executed and the results are displayed. If the MODE is set to “on new location”, then the
command is executed at each new location.

• Results Display − This display shows the results of the executed command. The display is
cleared prior to executing the command field. This window is scrollable so that all the results
can be viewed.

1.12.5.1 Setting the Font

Use the xlsfonts command to list all fonts installed on your system, then choose one you like. For
this example, we choose a sony font that is completely specified by the following string:

-sony-fixed-medium-r-normal--24-230-75-75-c-120-iso8859-1

There are two ways to set the font that your PGDBG GUI uses.

1. Use your .Xresources file:

Xpgdbg*font : <chosen font>
pgdbg*font : <chosen font>

For example:

pgdbg*font : -sony-fixed-medium-r-normal--24-230-75-75-c-120-iso8859-1

68 Chapter 1

You will have to merge these changes into your X environment for them to take effect. You can
use the following command:

 % xrdb -merge $HOME/.Xresources

2. Use the command line options : -fn . For example:

% pgdbg -fn -sony-fixed-medium-r-normal--0-0-100-100-c-0-jisx0201.1976-0...

1.13 PGDBG: Parallel Debug Capabilities

This section describes the parallel debug capabilities of PGDBG. PGDBG is a distributed SMP
debugger is capable of debugging parallel-distributed MPI programs, thread-parallel SMP
OpenMP (and Linuxthread) programs, and hybrid distributed SMP programs.

See http://www.pgroup.com/docs.htm for the most recent documentation. This material is also
available in $PGI/docs/index.htm. See http://www.pgroup.com/faq/index.htm for an online FAQ.

1.13.1 OpenMP and Linuxthread Support
• Automatic thread detection and attach

• Full thread control in parallel regions

• Thread grouping

• Threads presented by their OpenMP logical thread number

• Line level debugging preserved when thread

ο Enters a parallel region

ο Enters a serial region

ο Hits an OpenMP barrier

ο Hits an OpenMP synchronize statement

ο Enters an OpenMP sections program section

• Informative messages regarding thread state and location

http://www.pgroup.com/docs.htm
http://www.pgroup.com/faq/index.htm

The PGDBG Debugger 69

1.13.2 MPI Support
• Automatic process detection and attach

• Informative messages regarding process state and location

• Process grouping

• Processes presented by their global rank in COMMWORLD

1.13.3 Process & Thread Control
• Concise control of groups of processes/threads

• Thread and process synchronization

• Configurable thread and process stop mode

• Configurable wait mode

• Serial, process-only, threads-only, and multilevel debug modes

1.13.4 Graphical Presentation of Threads and Processes
• Process grid

• Thread grid

• Graphical grouping logic

• Color depiction of whole program execution state

• New window dedicated to printing program output, and accepting program input

• Thread sub-window. Lists each thread by its logical CPU ID. Displays for each thread its state
and stop location. Threads are grouped by parent process.

• Program I/O sub-window. Pops up automatically when program prints to stdout. The program
I/O sub-window can also be raised from the Window menu.

• Output written to stdout by the process being debugged is no longer block buffered.

• Process grid. Displays each process as a color-coded button in a grid. Click on a grid element
to refresh the GUI in the scope of that process. Each grid element is numbered with the
process's logical ID.

• Process grouping. Control processes in groups

70 Chapter 1

• Thread grid. Displays each thread as a color-coded button in a grid. Click on a grid element to
refresh the GUI in the scope of that thread. Each grid element is numbered with the thread’s
logical CPU ID.

1.14 Debugging Parallel Programs with PGDBG

This section describes how to invoke the debugger for thread-parallel (SMP) debugging and for
process-parallel (MPI) debugging. It provides some important definitions and background
information on how PGDBG represents processes and threads.

1.14.1 Processes and Threads

An active process is made up of one or more active threads of execution. In the context of a
process-parallel program, a process is an MPI process composed of one thread of execution. In the
context of a thread-parallel program, a thread is an OpenMP or Linux Pthread SMP thread.
PGDBG is capable of debugging hybrid process-parallel/thread-parallel programs where the
program employs multiple SMP processes.

PGDBG assigns a thread ID to each thread. PGDBG uses a thread’s OpenMP ID when debugging
an OpenMP program; zero based, incrementing in order of thread creation otherwise. Thread ID’s
are unique within the context of a single process only.

PGDBG assigns a process ID to each process. PGDBG uses a process’ MPI rank (in
communicator COMMWORLD) when debugging an MPI program; zero based, incrementing in
order of process creation otherwise. Process ID’s are unique across all active processes.

Each thread can be uniquely identified across all processes by prefixing its thread ID with the
process ID of its parent process. For example, thread 1.4 identifies the thread having thread ID 4
and the parent process having process ID 1.

An OpenMP program (thread-parallel only) logically runs as a collection of threads with a single
process, process 0, as the parent process. In this context, a thread is uniquely identified by its
thread ID. The process ID prefix is implicit and optional. See Section 1.15.2 Threads-only
debugging.

The PGDBG Debugger 71

An MPI program (non-SMP) logically runs as a collection of processes, each made up of a single
thread of execution. Thread 0 is implicit to each MPI process. A Process ID uniquely identifies a
particular process, and thread ID is implicit and optional. See Section 1.15.3 Process-only
debugging.

A hybrid, or multilevel MPI/OpenMP program, requires the use of both process and thread IDs to
uniquely identify a particular thread. See Section 1.15.4 Multilevel debugging.

A serial program runs as a single thread of execution, thread 0, belonging to a single process,
process 0. The use of thread IDs and process IDs is unnecessary but optional.

1.14.2 Thread-Parallel Debugging

PGDBG automatically attaches to new threads as they are created during program execution.
PGDBG describes when a new thread is created; the thread ID of each new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through using the threads command. Use
the procs command to display information about the parent process.

During a debug session, at any one time, PGDBG operates in the context of a single thread, the
current thread. The current thread is chosen by using the thread command when the debugger is
operating in text mode (invoked with the -text option), or by clicking in the thread grid when
the GUI interface is in use (the default). See Section 1.15.10.2 Thread Level Commands.

The threads command lists all threads currently employed by an active program. The threads
command displays for each thread its unique thread ID, system ID (Linux process ID), execution
state (running, stopped, signaled, exited, or killed), signal information and reason for stopping,
and the current location (if stopped or signaled). The arrow indicates the current thread. The
process ID of the parent is printed in the top left corner. The thread command changes the current
thread.

pgdbg [all] 2> thread 3

pgdbg [all] 3> threads

0 ID PID STATE SIGNAL LOCATION

=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address:
0x80490ab

 2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address:
0x80490cf

72 Chapter 1

 1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address:
0x80490ab

 0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address:
0x8048fa0

1.14.2.1 Invoking PGDBG: OpenMP, Linux Pthread Debugging

Use the following to invoke PGDBG, OpenMP, Linux Pthread debugging using text or GUI
mode:

GUI mode:

%pgdbg <executable> <args>,...<args>

TEXT mode:

%pgdbg -text <executable> <args>,...<args>

See the online tutorial at http://www.pgroup.com/doc/index.htm to get started.

1.14.3 Graphical Features

The PGDBG Graphical User Interface (GUI) lists all active threads in a thread grid. Each element
of the thread grid is labeled with a thread ID and represents a single thread. Each element is a
button that can be pushed to select a particular thread as the current thread. The PGDBG GUI
displays the program context of the current thread.

http://www.pgroup.com/doc/index.htm

The PGDBG Debugger 73

Figure 1-6: PGDBG GUI Interface: PGI Workstation

74 Chapter 1

Each button in the thread grid is color coded to depict the execution state of the underlying thread.

 Table 1-13: Thread State is Described using Color
Option Description

Stopped Red

Signaled Blue

Running Green

Exited Black

Killed Black

1.14.4 Process-Parallel Debugging

PGDBG automatically attaches to new MPI processes as they are created by a running MPI
program. PGDBG must be invoked via the MPIRUN script. Use the MPIRUN -dbg option to
specify which debugger to use. To choose PGDBG, use -dbg=pgdbg before the executable name
(this is not a program argument). PGDBG must be installed on your system and your PGI
environment variable set appropriately, and added to your PATH.

PGDBG displays an informational message as it attaches to the freshly created processes.

([1] New Process)

The MPI global rank is printed with the message. Use the procs command to list the host and the
PID of each process by rank. The current process is marked with an arrow. To change the current
process by process ID, use the proc command.

pgdbg [all] 0.0> proc 1; procs

Process 1: Thread 0 Stopped at 0x804a0e2, function main, file mpi.c,
line 30

 #30: aft=time(&aft);

 ID IPID STATE THREADS HOST

 0 24765 Stopped 1 local

 => 1 17890 Stopped 1 red2.wil.st.com

The PGDBG Debugger 75

pgdbg [all] 1.0>

The prompt displays the current process and the current thread. The current process above has
been changed to process 1, and the current thread of process 1 is 0. This is written as 1.0. See
Section 1.15.15 The PGDBG Command Prompt for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:

• At any one time, PGDBG operates in the context of a single process, the current process.

• Each active process has a thread set of size >=1.

• The current thread is a member of the thread set of the current process.

A license file distributed with PGDBG that restricts PGDBG to debugging a total of 64 threads.
Workstation and CDK license files may further restrict the number of threads that PGDBG is
eligible to debug. PGDBG will use the Workstation or CDK license files to determine the number
of threads it is able to debug.

With its 64 thread limit, PGDBG is capable of debugging a 16 node cluster with 4 CPUs on each
node or a 32 node cluster with 2 CPUs on each node or any combination of threads that add up to
64.

Use the proc command to change the current process. Those PGDBG commands that refer to
program scope execute off of the current scope of the current thread by default. The current thread
must be stopped in order to read from its memory space. See Section 1.15.10.2 Thread Level
Commands for a description and list of these context sensitive commands.

To list all active processes, use the procs command. The procs command lists all active processes
by process ID (MPI rank where applicable). Listed for each process: the system ID of the initial
thread, process execution state, number of active threads, and host name. The initial process is run
locally; ‘local’ describes the host the debugger is running on. The execution state of a process is
described in terms of the execution state of its component threads:

76 Chapter 1

 Table 1-14: Process state is described using color
Process state Description Color

Stopped If all threads are stopped
at breakpoints, or where
directed to stop by
PGDBG

Red

Signaled If at least one thread is
stopped on an interesting
signal (as described by
catch)

Blue

Running If at least one thread is
running

Green

Exited or Killed If all threads have been
killed or exited

Black

1.14.4.1 Invoking PGDBG: MPI Debugging

To debug an MPI program, PGDBG is invoked via MPIRUN. MPIRUN sets a breakpoint at
main and starts the program running under the control of PGDBG. When the initial process hits
main no other MPI processes are active. The non-initial MPI processes are created when the
process calls MPI_Init.

A Fortran MPI program stops at main initially instead of MAIN. You must step into MAIN.

GUI mode:

%mpirun -np 4 -dbg=pgdbg <executable> <args>,...<args>

TEXT mode:

%unsetenv DISPLAY

%mpirun -np 4 -dbg=pgdbg <executable> <args>,...<args>

An MPI debug session starts with the initial process stopped at main. Set a breakpoint at a
program location after the return of MPI_Init to stop all processes there. If debugging Fortran,
step into the MAIN program.

See the online tutorial at http://www.pgroup.com/doc/index.htm to get started.

http://www.pgroup.com/doc/index.htm

The PGDBG Debugger 77

1.14.4.2 MPI-CH Support

PGDBG supports redirecting stdin, stdout, and stderr with the following MPI-CH
switches:

 Table 1-15: MPI-CH Support
Command Output

-stdout <file>
Redirect standard output to
<file>

-stdin <file>
Redirect standard input from
<file>

-stederr <file>
Redirect standard error to <file>

PGDBG also provides support for the following MPI-CH switches:

Command Output
-nolocal

PGDBG runs locally, but no MPI
processes run locally

-all-local
PGDBG runs locally, all MPI
processes run locally

If you are using your own version of MPI-CH, see our online FAQ for how to integrate the
MPIRUN scripts with PGDBG.

When PGDBG is invoked via MPIRUN the following PGDBG command line arguments are not
accessible. A possible workaround is listed for each.

Argument Workaround

-dbx Include 'pgienv dbx on' in
.pgdbgrc file

-s startup Use .pgdbgrc default script file and
the script command.

-c "command" Use .pgdbgrc default script file and
the script command.

78 Chapter 1

-text Clear your DISPLAY environment
variable before invoking MPIRUN

-t <target> Add to the beginning of the PATH
environment variable a path to the
appropriate PGDBG.

1.14.4.3 Graphical Features
The PGDBG GUI lists all active processes in a process grid. Each element of the process grid is
labeled with a process ID and represents a single process. Each element is a button that can be
pushed to select a particular process as the current process. A diamond indicates the current
process. The thread grid depicts the threads of the current process. When the current process is
changed, the thread grid is refreshed to describe the threads of the (new) current process, and the
current thread is set to be the current thread of that process. PGDBG displays the program context
of the current thread (source position, registers, disassembly, etc.).

The PGDBG Debugger 79

Figure 1-7: PGDBG GUI Interface: Cluster Development Kit

80 Chapter 1

1.15 Thread-parallel and Process-parallel Debugging

This section describes how to name a single thread, how to group threads and processes into sets,
and how to apply PGDBG commands to groups of processes and threads.

1.15.1 PGDBG Debug Modes and Process/Thread Identifiers

PGDBG can operate in four debug modes. As a convenience, the mode determines a short form
for uniquely naming threads and processes. The debug mode is set automatically or by using the
pgienv command.

 Table 1-16: The PGDBG Debug Modes
Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads
of execution

Process-only Multiple processes, each process
made up of a single thread of
execution

Multilevel Multiple processes, at least one
process employing multiple threads
of execution

PGDBG starts out in serial mode reflecting a single thread of execution. Thread IDs can be
ignored in serial debug mode since there is only a single thread of execution.

If PGDBG is licensed as a Workstation product, it operates in Threads-only mode by default
(however multilevel notation is always valid).

If PGDBG is licensed as a CDK product, it operates in process-only mode by default.

The PGDBG prompt displays the current thread according to the current debug mode. See 1.15.15
The PGDBG Command Prompt for a description of the PGDBG prompt.

The PGDBG Debugger 81

The pgienv command is used to change debug modes manually.

pgienv mode [serial|thread|process|multilevel]

The debug mode can be changed at any time during a debug session.

1.15.2 Threads-only debugging

Enter threads-only mode to debug a program with a single SMP process. As a convenience the
process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from
serial debug mode when it attaches to SMP threads.

Example 1-1: Thread IDs in threads-only debug mode

1 Thread 1 of all processes (*.1)

* All threads of all processes (*. *)

0.7 Thread 7 of process 0 (Multilevel
thread names valid in threads-only
debug mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on
context.

1.15.3 Process-only debugging

Enter process-only mode to debug a program with non-SMP nodes. As a convenience, the thread
ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial
debug mode when the target program returns from MPI_Init.

 Example 1-2: Process IDs in process-only debug mode
0 All threads of process 0 (0.*)

* All threads of all processes (*.*)

1.0 Thread 0 of process 1 (Multilevel
thread names are valid in this mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending

82 Chapter 1

on context.

1.15.4 Multilevel debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process
ID. This forms a unique name for each thread across all processes. This naming scheme is valid in
all debug modes. PGDBG changes automatically to multilevel debug mode from process-only
debug mode or threads only-debug mode when at least one MPI process spawns SMP threads.

 Example 1-3: Thread IDs in multilevel debug mode
0.1 Thread 1 of process 0

0.* All threads of process 0

In multilevel debug, mode status and error messages are prefixed with process/thread IDs
depending on context.

1.15.5 Process/Thread Sets

A process/thread set (p/t-set) is used to restrict a debugger command to apply to just a particular
set of threads. A p/t-set is a set of threads drawn from all threads of all processes in the target
program. Use p/t-set notation (described below) to define a p/t-set.

The current p/t-set can be set using the focus command, which establishes the default p/t-set for
cases where no p/t-set prefix is specified. This begins as the debugger-defined set [all], which
describes all threads of all processes.

P/t-set notation can be used to prefix a debugger command. This overrides the current p/t-set
defining the target threads to be those threads described by the prefix p/t-set.

The target p/t-set is defined then to be the prefix p/t-set if present, it is the current p/t-set
otherwise.

• Use defset to define a named or user-defined p/t-set.

• Use viewset and whichsets to inspect the active members described by a particular p/t-set.

The target p/t-set determines which threads are affected by a PGDBG command.

The PGDBG Debugger 83

1.15.6 P/t-set Notation

The following set of rules describes how to use and construct process/thread sets (p/t-sets).

simple command :
[p/t-set-prefix] command parm0, parm1, ...

compound command :
[p/t-set-prefix] simple-command [; simple-command ...]

p/t-id :
{integer|*}.{integer|*}

 Optional notation when processes-only debugging or threads-only debugging is in effect (see
pgienv command).

{integer|*}

p/t-range :
p/t-id:p/t-id

p/t-list :
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t set :
[[!]{p/t-list|set-name}]

 Example 1-4: P/t-sets in threads-only debug
[0,4:6] Threads 0,4,5, and 6 of all processes

[*] All threads of all processes

[*.1] Thread 1 of all processes.
Multilevel notation is valid in
threads-only mode

[*.*] All threads of all processes

84 Chapter 1

 Example 1-5: P/t-sets in process-only debug
[0,2:3] All threads of process 0, 2, and 3

(equivalent to [0.*,2:3.*])

[*] All threads of all processes
(equivalent to [*.*])

[0] All threads of process 0 (equivalent
to [0.*])

[*.0] Thread 0 of all processes.
Multilevel syntax is valid in
process-only mode.

[0:2.*] All threads of process 0, 1, and 2.
Multilevel syntax is valid in
process-only debug mode.

 Example 1-6: P/t-sets in multilevel debug mode
[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set
clients

[1] Incomplete; invalid in multilevel
debug mode

P/t-sets defined with defset are not mode dependent and are valid in any debug mode.

The PGDBG Debugger 85

1.15.7 Dynamic vs. Static P/t-sets

The members of a dynamic p/t-set are those active threads described by the p/t-set at the time that
p/t-set is used. A p/t-set is dynamic by default. Threads and processes are created and destroyed as
the target program runs. Membership in a dynamic set varies as the target program runs.

 Example 1-7: Defining a dynamic p/t-set
defset clients [*.1:3] Defines a named set clients

whose members are threads 1, 2,
and 3 of all processes that are
currently active when clients is
used. Membership in clients
changes as processes are created
and destroyed.

The members of a static p/t-set are those threads described by the p/t-set at the time that p/t-set is
defined. Use a ! to specify a static set. Membership in a static set is fixed at definition time.

 Example 1-8: Defining a Static p/t-set
defset clients [!*.1:3] Defines a named set clients

whose members are threads 1, 2,
and 3 of those processes that are
currently active at the time of the
definition.

1.15.8 Current vs. Prefix P/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger
prompt (depending on debug mode). A p/t-set can be used to prefix a command to override the
current p/t-set. The prefix p/t-set becomes the target p/t-set for the command. The target p/t-set
defines the set of threads that will be affected by a command. See Section 1.15.15 The PGDBG
Command Prompt for a description of the PGDBG prompt.

• The target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont

Continue all threads in all processes

86 Chapter 1

• The target p/t-set is the prefix p/t-set:

pgdbg [all] 0.0> [0.1:2] cont

Continue threads 1 and 2 of process 0 only

Above, the current p/t-set is the debugger-defined set [all] in both cases. In the first case,
[all] is the target p/t-set. In the second case, the prefix set overrides [all] as the target p/t-set.
The continue command is applied to all active threads in the target p/t-set. Using a prefix p/t-set
does not change the current p/t-set.

1.15.9 P/t-set Commands

The following commands can be used to collect threads into logical groups.

• defset and undefset can be used to manage a list of named p/t-sets.

• focus is used to set the current p/t-set.

• viewset is used to view the active members described by a particular p/t-set.

• whichsets is used to describe the p/t-sets to which a particular process/thread belongs.

 Table 1-17: P/t-set commands
Command Description

focus Set the target process/thread set for commands.
Subsequent commands will be applied to the
members of this set by default

defset Assign a name to a process/thread set. Define a
named set. This set can later be referred to by name.
A list of named sets is stored by PGDBG

undefset 'Undefine' a previously defined process/thread set.
The set is removed from the list. The debugger-
defined p/t-set [all] can not be removed

viewset List the members of a process/thread set that
currently exist as active threads

whichsets List all defined p/t-sets to which the members of a
process/thread set belongs

The PGDBG Debugger 87

pgdbg [all] 0> defset initial [0]

"initial" [0] : [0]

pgdbg [all] 0> focus [initial]

[initial] : [0]

[0]

pgdbg [initial] 0> n

The p/t-set initial is defined to contain only thread 0. We focus on initial and advance the
thread. Focus sets the current p/t-set. Because we are not using a prefix p/t-set, the target p/t-set is
the current p/t-set which is initial.

The whichsets command above shows us that thread 0 is a member of two defined p/t-sets. The
viewset command displays all threads that are active and are members of defined p/t-sets. The
'pgienv verbose' command can be used to turn on verbose messaging, displaying the stop
location of each thread as it stops.

pgdbg [initial] 0> whichsets [initial]

Thread 0 belongs to:

all

initial

pgdbg [initial] 0> viewset

"all" [*.*] : [0.0,0.1,0.2,0.3]

"initial" [0] : [0]

pgdbg [initial] 0> focus [all]

[all] : [0.0,0.1,0.2,0.3]

[*.*]

pgdbg [all] 0> undefset initial

p/t-set name "initial" deleted.

88 Chapter 1

pgdbg [all] 0>

1.15.10 Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint
subsets according to how each command reacts to the current p/t-set. Process level and thread
level commands are parallelized. Global commands are not.

 Table 1-18: PGDBG Parallel Commands
Commands Action

Process Level Commands Parallel by current p/t-set or prefix
p/t-set

Thread Level Commands Parallel by prefix p/t-set. Ignores
current p/t-set

Global Commands Non-parallel commands

1.15.10.1 Process Level Commands

The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A
prefix set can be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if
present. If a target p/t set does not exist, the current p/t-set is the prefix.

cont next nexti step stepi

stepout sync synci halt wait

Example:

pgdbg [all] 0.0> focus [0.1:2]

pgdbg [0.1:2] 0.0> next

The next command is applied to threads 1 and 2 of process 0.

The PGDBG Debugger 89

Example:

pgdbg [clients] 0.0> [0.3] n

This demonstrates the use of a prefix p/t-set. The next command is applied to thread 3 of process 0
only.

1.15.10.2 Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is
used, these commands execute in the context of the current thread of the current process by
default. That is, thread level commands ignore the current p/t-set. Thread level commands can be
applied to multiple threads by using a prefix p/t-set. When a prefix p/t-set is used, the commands
in this section are executed in the context of each active thread described by the prefix p/t-set.
The target p/t-set is the prefix p/t-set if present, or the current thread if not prefix p/t set exists.
The thread level commands are:

set assign pc sp

fp retaddr regs line

func lines addr entry

decl whatis rval lval

sizeof iread cread sread

fread dread print hex

dec oct bin ascii

string disasm dump pf

noprint where stack break*

stackdump scope watch track

break do watchi tracki

doi hwatch

* breakpoints and variants: (stop, stopi, break, breaki) if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following occurs when a prefix p/t-set is used:

• the threads described by the prefix are sorted per process by thread ID in increasing order.

90 Chapter 1

• the processes are sorted by process ID in increasing order, and duplicates are removed.

• the command is then applied to the threads in the resulting list in order.

pgdbg [all] 0.0> print myrank

0

Without a prefix p/t-set, the print command executes in the context of the current thread of the
current process, thread 0.0, printing rank 0.

pgdbg [all] 0.0> [2:3.*,1:2.*] print myrank

[1.0] print myrank:

1

[2.0] print myrank:

2

[2.1] print myrank:

2

[2.2] print myrank:

2

[3.0] print myrank:

3

[3.2] print myrank:

3

[3.1] print myrank:

3

The thread members of the prefix p/t-set are sorted and duplicates are removed. The print
command iterates over the resulting list.

1.15.10.3 Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all
threads across all processes. The current p/t-set and a prefix p/t-set are ignored.

The PGDBG Debugger 91

The following is a list of commands that are defined globally.

debug run rerun threads

procs proc thread call

unbreak delete disable enable

arrive wait breaks status

help script log shell

alias unalias directory repeat

pgienv files funcs source

use cd pwd whereis

edit / ? history

catch ignore quit focus

defset undefset viewset whichsets

display

1.15.11 Process and Thread Control

PGDBG supports thread and process control (‘stepping’, ‘nexting', 'continuing' ...) everywhere in
the program. Threads and processes can be advanced in groups anywhere in the program.

The PGDBG control commands are:

cont, step, stepi, next, nexti,

stepout, halt, wait, sync, synci

To describe those threads you wish to advance, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. So if the current
thread 'next's over an _mp_init call (at the beginning of every OpenMP parallel region), then all
threads created by _mp_init will 'next' into the parallel region.

A process inherits the control operation of the current process when it is created. So if the current
process is 'continuing' out of a call to MPI_Init, the new process will do the same.

92 Chapter 1

The PGDBG GUI supports process/thread selection via the use of the thread grid and the process
grid. To change the current process/thread, click on the corresponding button in the grid.
Changing processes updates the thread grid (if present) to display the threads of the new current
process. See Section 1.12.1 Main Window for sample of the graphical user interface.

Accompanying each grid is a set of toggle buttons with the labels ‘all’ or ‘current’. These buttons
can be used to construct a prefix p/t-set for the next command. The toggle buttons apply to the
'cont', 'stepout', 'next', 'nexti', 'step', 'stepi', 'halt', and 'wait' buttons only.

A process grid is part of the GUI if PGDBG is licensed as part of the CDK. Selecting ‘all’
processes translates to a ‘*’ for processes in the prefix set. Selecting ‘current’ places the process
ID of the current process into the prefix set.

A thread grid is part of the GUI if PGDBG is licensed as part of the CDK or as part of the
Workstation. Selecting ‘all’ threads translates to a ‘*’ for threads in the prefix set. Selecting
‘current’ places the thread ID of the current thread into the prefix set.

Example:

‘all’ process and ‘all’ threads constructs a [*.*] p/t-set prefix.

‘current’ process and ‘all’ threads constructs a [0.*] p/-set prefix if process 0 is the current
process for example.

At least one of the grids will also have a ‘none’ button in the toggle set. Selecting none disables
automatic p/t-set prefixing by the GUI causing the target p/t-set to be the current p/t-set (since
there is no prefix override).

1.15.12 Configurable Stop Mode

PGDBG lets you configure how threads and processes stop in relation to one another. PGDBG
defines two new pgienv environment variables, threadstop and procstop, for this
purpose. PGDBG defines two stop modes, synchronous (sync) and asynchronous (async).

The PGDBG Debugger 93

 Table 1-19: PGDBG Stop Modes
Command Result

sync Synchronous stop mode; when one
thread stops at a breakpoint (event),
all other threads are stopped soon
after

async Asynchronous stop mode; each
thread runs independently of the
other threads. One thread stopping
does not affect the behavior of
another

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [sync|async]

Process stop mode is set using the pgienv command as follows:

pgienv procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When
debugging an OpenMP program, PGDBG automatically enters synchronous thread stop mode in
serial regions, and asynchronous thread stop mode in parallel regions. Synchronous stopping is
useful for debugging critical regions. See Section 1.16 OpenMP Debugging, for details.

The pgienv environment variable threadstopconfig and procstopconfig can be set to
automatic (auto) or user defined (user) to enable or disable this behavior.

pgienv threadstopconfig [auto|user]

pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes
automatically. Automatic stop configuration is the default for both threads and processes.

1.15.13 Configurable Wait mode

Wait mode describes when PGDBG will accept the next command. The wait mode is defined in
terms of the execution state of the program. Wait mode describes to the debugger which
threads/processes must be stopped before it will accept the next command. In certain situations, it
is desirable to be able to enter commands while the program is running and not stopped. The

94 Chapter 1

PGDBG prompt will not appear until all processes/threads are stopped. However, a prompt may
be available before all processes/threads have stopped. Pressing <enter> at the command line
will bring up a prompt if it is available. The availability of the prompt is determined by the current
wait mode and any pending wait commands (described below).

PGDBG accepts a compound statement at each prompt. Each compound statement is a bundle of
commands, which are processed in order at once. The wait mode describes when to accept the
next compound statement. PGDBG supports three wait modes:

 Table 1-20: PGDBG Wait Modes
Command Result

any The prompt is available only after at least one
thread has stopped since the last control
command

all The prompt is available only after all threads
have stopped since the last control command

none The prompt is available immediately after a
control command is issued

• Thread wait mode describes which threads PGDBG waits for before accepting a next
command.

• Process wait mode describes which processes PGDBG waits for before accepting a next
command.

Thread wait mode is set using the pgienv command as follows:

pgienv threadwait [any|all|none]

Process wait mode is set using the pgienv command as follows:

pgienv procwait [any|all|none]

If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode PGDBG defaults to

threadwait all

procwait any

The PGDBG Debugger 95

If the target program goes MPI parallel then procwait is changed to none automatically by
PGDBG.

In GUI mode:

threadwait none

procwait none

Setting the wait mode may be necessary when invoking the debugger using the -s (script file)
option in GUI mode (to ensure that the necessary threads are stopped before the next command is
processed if necessary).

PGDBG also provides a wait command that can be used to insert explicit wait points in a
command stream. Wait uses the target p/t-set by default, which can be set to wait for any
combination of processes/threads. The wait command can be used to insert wait points between
the commands of a compound statement.

The threadwait and procwait environment variables can be used to configure the behavior
of wait (see pgienv).

 Table 1-21: PGDBG Wait Behavior

The following table describes the behavior of wait. In this example:

• S is the target p/t-set

• P is the set of all processes described by S and p is a process

• T is the set of all threads described by S and t is a thread

Command threadwait procwait Wait set

wait all all Wait for T

wait all none|any Wait for all threads in at
least one p in P

wait none|any all Wait for T

wait none|any none|any Wait for all t in T for at
least one p in P

96 Chapter 1

Command threadwait procwait Wait set

wait any all all Wait for at least one thread
for each process p in P

wait any all none|any Wait for at least one t in T

wait any none|any all Wait for at least one thread
in T for each process p in P

wait any none|any none|any Wait for at least one t in T

wait all all all Wait for T

wait all all none|any Wait for all threads of at
least one p in P

wait all none|any all Wait for T

wait all none|any none|any Wait for all t in T for at
least one p in P

Wait none all|none|
any

all|none|any Wait for no threads

1.15.14 Status Messages

Use the pgienv command to enable/disable various status messages. This can be useful in text
mode in the absence of the graphical aids provided by the GUI.

pgienv verbose <bitmask>

Choose the debug status messages that are reported by PGDBG. The tool accepts an integer
valued bit mask of the values described in the following table.

The PGDBG Debugger 97

 Table 1-22: PGDBG Status Messages
Thread Format Information

0x1 Standard Report status information on current process/thread only. A
message is printed only when the current thread stops. Also
report when threads and processes are created and destroyed.
Standard messaging cannot be disabled. (default)

0x2 Thread Report status information on all threads of (current) processes.
A message is reported each time a thread stops. If Process
messaging is also enabled, then a message is reported for each
thread across all processes. Otherwise, messages are reported
for threads of the current process only.

0x4 Process Report status information on all processes. A message is
reported each time a process stops. If Thread messaging is also
enabled, then a message is reported for each thread across all
processes. Otherwise messages are reported for the current
thread only of each process.

0x8 SMP Report SMP events. A message is printed when a process
enters/exits a parallel region, or when the threads synchronize.

0x16 Parallel Report process-parallel events (default). Currently unused.

0x32 Symbolic
debug
information

Report any errors encountered while processing symbolic
debug information (e.g. STABS, DWARF).

1.15.15 The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode (See Section 1.15.1 PGDBG
Debug Modes and Process/Thread Identifiers).

In serial debug mode, the PGDBG prompt looks like this:

pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set followed by the ID of the current
thread.

pgdbg [all] 0>

Current thread is 0

98 Chapter 1

In process-only debug mode, PGDBG displays the current p/t-set followed by the ID of the
current process.

pgdbg [all] 0>

Current process is 0

In multilevel debug mode, PGDBG displays the current p/t-set followed by the ID of the current
thread prefixed by the id of its parent process.

pgdbg [all] 1.0>

Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to
printing the current p/t-set at the prompt.

See Section 1.15.1 PGDBG Debug Modes and Process/Thread Identifiers for a description of the
PGDBG debug modes.

1.15.16 Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and
processes. 1.9.1.3 Events, such as breakpoints and watchpoints, are user-defined events. User
defined events are Thread Level commands (See Section 1.15.10.2 Thread Level Commands for
details).

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to
set breakpoints on specific processes and threads.

Example:

i) pgdbg [all] 0> b 15

ii) pgdbg [all] 0> [all] b 15

iii) pgdbg [all] 0> [0.1:3] b 15

i and ii are equivalent. iii sets a breakpoint on threads 1,2,3 of
process 0 only.

All other user events by default are set for the current thread only. A prefix p/t-set can be used to
set user events on specific processes and threads.

The PGDBG Debugger 99

Example:

i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

i sets a data breakpoint for glob on thread 0 only. ii sets a data
breakpoint for glob on all threads that are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for it thus far. All
other events must be defined after the process/thread is created. All processes must be stopped to
add, enable, or disable a user event.

Many events contain 'if' and 'do' clauses.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

Example:

i) pgdbg [all] 0> b 15

ii) pgdbg [all] 0> [all] b 15

iii) pgdbg [all] 0> [0.1:3] b 15

i and ii are equivalent. iii sets a breakpoint on threads 1,2,3 of
process 0 only.

All other user events by default are set for the current thread only. A prefix p/t-set can be used to
set user events on specific processes and threads.

Example:

i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

i sets a data breakpoint for glob on thread 0 only. ii sets a data
breakpoint for glob on all threads that are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for it thus far. All
other events must be defined after the process/thread is created. All processes must be stopped to

100 Chapter 1

add, enable, or disable a user event.

Many events contain 'if' and 'do' clauses.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint will fire only if glob is non-zero. The 'do' clause is executed if the breakpoint
fires. The 'if' clause and the 'do' clause execute in the context of a single thread. The conditional in
the 'if' and the body of the 'do' execute off of a single (same) thread; the thread that triggered the
event. Think of the above definition as:

[0] if (glob!=0) {[0] set f = 0}

[1] if (glob!=0) {[1] set f = 0}

...

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-
zero, f is bound in the context of thread 1 and its value is set to 0.

Control commands can be used in 'do' clauses, however they only apply to the current thread and
are only well defined as the last command in the 'do' clause.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a 'do' clause, the current thread is added to the wait set of the
current process.

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

'if' conditionals and 'do' bodies cannot be parallelized with prefix p/t-sets.

Example:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

This is illegal. The body of a 'do' statement cannot be parallelized.

The PGDBG Debugger 101

1.15.17 Parallel Statements

This section describes how to use a p/t-set to define a statement across multiple threads and
processes.

1.15.17.1 Parallel Compound/Block Statements

Example:

pgdbg [all] 0>[*] break main;

cont; wait; print f@11@i

ii.) pgdbg [all] 0>[*] break main;

[*]cont; [*]wait; [*]print f@11@i

i. and ii. are equivalent. Each command in a compound statement is executed in order. The target
p/t-set is broadcast to all statements. Use the wait command if subsequent commands require
threads to be stopped (the print command above). The commands in a compound statement are
executed together in order.

The threadwait and procwait environment variables do not affect how commands within a
compound statement are processed. These pgienv environment variables describe to PGDBG
under what conditions (runstate of program) it should accept the next (compound) statement.

1.15.17.2 Parallel If, Else Statements

This section describes parallel 'if' and 'else' statements.

Example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

A prefix p/t-set parallelizes an 'if' statement. An 'if' statement executes in the context of the current
thread by default. The above example is equivalent to:

 [*] if (i==1) ==> [s]

 [s]break func; [s]c; [s]wait;

 else ==> [s']

 [s']sync func2

Where [s] is the subset of [*] for which (i==1), and [s'] is the subset of [*] for which (i!=1).

102 Chapter 1

1.15.17.3 Parallel While Statements

This section describes parallel 'while' statements.

Example:

 pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

A prefix p/t-set parallelizes a 'while' statement. A 'while' statement executes in the context of the
current thread by default. The above example is equivalent to:

 [*] ==> [s]

 while(|[s]|){

 [s] if (i<10) ==> [s]

 [s]n; [s]wait; [s]print i;

 }

Where [s] is the subset of [*] for which (i<10). The 'while' statement terminates when [s] is the
empty set (or a 'return') statement is executed in the body of the 'while'.

1.15.17.4 Return Statements

The ‘return’ statement is defined only in serial context, since it cannot return multiple values.
When 'return' is used in a parallel statement, it will return last value evaluated.

1.16 OpenMP Debugging

An attempt is made by PGDBG to preserve line level debugging and to help make debugging
OpenMP programs more intuitive. PGDBG preserves line level debugging across OpenMP
threads in the following situations:

• Entrance to parallel region

• Exit parallel region

• Nested parallel regions synchronization points

• Critical and exclusive sections

• Parallel sections

The PGDBG Debugger 103

Threads may be held and others advanced automatically to negotiate OpenMP program constructs
like synchronization points and critical sections. PGDBG also sets the thread stop mode to
synchronous when a program runs to a serial region, and asynchronous when a program runs to a
parallel region. These features are an attempt to make debugging an OpenMP program easier, and
are included by default. (See Section 1.16.2 Disabling PGDBG's OpenMP Event Support to turn
off this behavior). PGDBG assumes a legal OpenMP target program.

A control command applied to a running process will only be applied to the stopped threads of
that process, and is ignored by its running threads. Threads held by the PGDBG OpenMP event
handler will also ignore the control command in most situations. For a general introduction to
thread-parallel debugging, see sections 1.14.2 Thread-Parallel Debugging and 1.14.3 Graphical
Features for instructions on using the GUI for thread-parallel debugging. See the online tutorial at
http://www.pgroup.com/doc/index.htm to get started using OpenMP Debugging.

1.16.1 Serial vs. Parallel Regions

The initial thread is the thread with OpenMP ID 0. Conceptually, the initial thread is the only
thread that is well defined (for the purpose of doing useful work) in a serial region of code. All
threads are well defined in a parallel region of code. When the initial thread is in a serial region,
the non-initial threads are busy waiting at the end of the last parallel region, waiting to be called
down to do some work in the next parallel region. All threads enter the (next) parallel region only
when the first thread has entered the parallel region, (i.e., the initial thread is not in a serial
region.)

PGDBG source line level debugging operations (next, step,...) are not well defined for non-initial
threads in serial regions since these threads are stuck in a busy loop, which is not compiled to
include source line information. The instruction level PGDBG control commands (nexti, stepi, ...)
are well defined if you want to advance through the described wait loop at the assembly level.

For example, if next is applied to a single thread with OpenMP ID 3 (non-initial thread) in a serial
region and all other threads are stopped, then next will never complete. By definition, next returns
only when the thread hits a source line. However, thread 3 running by itself in a serial region will
never hit a text address that corresponds to a source line since it is waiting in a busy loop for work
to do in the next parallel region. The program will not run to the next parallel region unless thread
0 is run. The busy loop is not compiled with debug information, and is linked into your program
when you compile with -mp or -Mconcur.

Control commands should only be applied to the initial thread in serial regions of code.
Synchronous thread stop mode can also be used, however 'stepping' and 'nexting' all threads in a
serial region may slow down the debugger.

http://www.pgroup.com/doc/index.htm

104 Chapter 1

1.16.2 Disabling PGDBG's OpenMP Event Support

PGDBG provides explicit support for OpenMP events. OpenMP events are points in a well-
defined OpenMP program where one thread depends on the program location of another thread for
it to continue (a barrier for example). PGDBG’s support for OpenMP events can be disabled using
the omp pgienv environment variable.

pgienv omp [on|off]

If PGDBG’s OpenMP Event support is disabled, (‘pgienv omp off’) it is recommended that
you use the following pgienv settings:

pgienv threadstopconfig user

pgienv threadstop async

pgienv threadwait none

These settings allow threads to stop independently, while allowing commands to be entered while
threads are running (‘threadwait none’). This is necessary to start (cont, next, ...) and stop
(halt) threads while some are spinning in OpenMP wait loops (barriers etc.).

Note: OpenMP thread-parallel programs running under the control of PGDBG will run faster with
the OpenMP event handler disabled.

The PGDBG Debugger 105

1.17 MPI Debugging

1.17.1 Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed SMP
programs. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as it
is created.

See Section 1.14.4 Process-Parallel Debugging to get started.

Here are some things to consider when debugging an MPI program:

• Use p/t-sets to focus on a set of processes. Mind process dependencies.

• In order for a process to receive a message, the sender must be allowed to run.

• Process synchronization points, such as MPI_Barrier, will not return until all processes
have hit the sync point.

• MPI_Finalize will not return for Process 0 until Process 1..n-1 exit.

A control command (cont, step,...) can be applied to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that
process, and is ignored by its running threads. Those threads that are held by the OpenMP event
handler will also ignore the control command in most situations.

PGDBG automatically switches to process wait mode none ('pgienv procwait none')
as soon as it attaches to its first MPI process. See the pgienv command and Section 1.17.5 MPI
Listener Processes for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging
MPI programs since MPIRUN passes arguments to the program that must be included.

1.17.2 Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the
program.

pgdbg [all] 0.0> sync MPI_Finalize

106 Chapter 1

This command runs all processes to MPI_Finalize.

pgdbg [all] 0.0> [0:1.*] sync MPI_Finalize

This command runs process 0 and process 1 to MPI_Finalize.

A synchronize command will only successfully sync the target processes if the sync address is well
defined for each member of the target process set, and all process dependencies are satisfied
(otherwise the member could wait forever for a message for example). The debugger cannot
predict if a text address is in the path of an executing process.

1.17.3 MPI Message Queues

PGDBG currently does not support MPI message queue dumping. One way to inspect the MPI
message queues is to compile your MPI-CH distribution with PGCC with the option -g to include
debug information. Then inspect the contents of each queue by variable name. See the online FAQ
at http://www.pgroup.com/faq/index.htm for details.

1.17.4 MPI Groups

PGDBG identifies each process by its COMMWORLD rank. In general, PGDBG currently
ignores MPI groups.

1.17.5 MPI Listener Processes

Entering Control-C (^C) from the PGDBG command line can be used to halt all running
processes. However, this is not the preferred method to use while debugging an MPI program.
Entering ^C at the command line, sends a SIGINT signal to the debugger’s children. This signal
is never received by the MPI processes listed by the procs command (i.e., the initial and attached
processes), SIGINT is intercepted in each case by PGDBG. PGDBG does not attach to the MPI
listener processes that pair each MPI process. These processes handle IO requests among other
things. As a result, a ^C from the command line will kill these processes resulting in undefined
program behavior.

http://www.pgroup.com/faq/index.htm

The PGDBG Debugger 107

It is for this reason, that PGDBG automatically switches to process wait mode none ('pgienv
procwait none') as soon as it attaches to its first MPI process. This allows the use of the halt
command to stop running processes, without the use of ^C. The setting of 'pgienv procwait
none' allows commands to be entered while there are running processes.

Note: halt cannot interrupt a wait by definition of wait. ^C must be used for this, or careful use of
wait.

1.17.6 SSH and RSH

PGDBG supports ssh as well as rsh. The environment variable PGRSH, should be set to ssh or
rsh, to indicate the communication method needed. The default is rsh.

1.18 Limitations

1.18.1 PGDBG Limitations—Parallel Debugging

This sections describes limitations in PGDBG’s parallel debug support:

• Versions of Linux must be identical on all nodes of cluster.

• PGDBG assumes that all processes share the same process image (homogeneous loads,
and memory map).

• PGDBG recognizes shared objects on the initial node only.

• Process attach is not supported. Initial process is forked from debugger.

• Fortran thread private variables are not available in PGDBG.

• The values of thread private variables are available at the first instruction of each source
line only (line level debugging only).

• If you are using RH 6.2, you will need to install a patch to use hardware watchpoints. For
more details, see the FAQ at http://www.pgroup.com/faq/index.htm.

http://www.pgroup.com/faq/index.htm

108 Chapter 1

1.18.2 Other Limitations

This section describes system limitations and other behavior.

• Stdout is block buffered by all non-initial MPI processes.

• Calling omp_set_num_threads(n) from program may cause all non-initial threads to exit
before creating n-1 new threads. This is expected behavior.

• Calling omp_set_num_threads(n) from hybrid OpenMP/MPI program may employ the
use of the SUGHUP signal off of MPI_Finalize(). This is expected behavior.

• Some IO routines use semaphores and locking. It is therefore possible to hang some
threads off of a stdio routine indefinitely. When your program appears to hang, it is best
to continue all threads to a breakpoint outside of the stdio routine.

• There is a socket limit imposed by the Linux system. PGDBG uses sockets to
communicate with thin debug servers running on each node of the cluster. If the system
runs out of sockets, the following message will be printed after a one minute timeout.
PGDBG will then ignore the rest of the (unattached) processes. Those ignored processes
will never return from MPI_Init.

poll: protocol failure in circuit setup

- accept: Bad file descriptor

ERROR: unable to attach to (PID 2763, HOST
red2.wil.st.com)

[New Process (PID 26200, HOST red2.wil.st.com) IGNORED]

1.18.3 Private Variables

PGDBG understands private variables with some restrictions. In particular, inspecting private
variables while debugging FORTRAN programs is not supported.

Private variables in C must be declared in the enclosing lexical block of the parallel region in
order for them to be visible using PGDBG.

For example:

{
 #pragma omp parallel

The PGDBG Debugger 109

 {
 int i;
 ...
 /* i is private to 'this' thread */
 ...
 }
}

In the above case, i would be visible inside PGDBG for each thread. However, in the following
example, i is not visible inside PGDBG:

{
 int i;
 #pragma omp parallel private(i)
 {
 ...
 /* i is private to 'this' thread
 but not visible within PGDBG */
 ...
 }
}

A private variable of a Thread A is accessed by switching the current thread to A, and by using the
name (qualified if necessary) of the private variable.

The PGPROF Profiler 111

Chapter 2
The PGPROF Profiler
This chapter introduces the PGPROF profiler. The profiler is a tool that analyzes data generated
during execution of specially compiled C, C++, F77, F90 and HPF programs. The PGPROF
profiler lets you discover which functions and lines were executed as well as how often they were
executed and how much of the total time they consumed.

The PGPROF profiler also allows you to profile multi-process HPF or MPI programs, multi-
threaded SMP programs (OpenMP or programs compiled with -Mconcur), or hybrid multi-process
programs employing multiple processes with multiple SMP threads for each process. The multi-
process information lets you select combined minimum and maximum process data, or select
process data on a process-by-process basis. Multi-threaded information can be queried in the same
way as on a per-process basis. This information can be used to identify communications patterns,
and identify the portions of a program that will benefit the most from performance tuning.

2.1 Introduction

Profiling is a three-step process:

Compilation Compiler switches cause special profiling calls to be inserted in the code
and data collection libraries to be linked in.

Execution The profiled program is invoked normally, but collects call counts and
timing data during execution. When the program terminates, a profile data
file is generated (pgprof.out).

Analysis The PGPROF tool interprets the pgprof.out file to display the profile data
and associated source files. The profiler supports function level and line
level data collection modes. The next section provides definitions for these
data collection modes.

112 Chapter 2

2.1.1 Definition of Terms

Function Level Profiling
Is the strategy of collecting call counts and execution times on a per
function basis.

Line Level Profiling
Execution counts and times within each function are collected in addition to
function level data. Line Level is somewhat of a misnomer because the
granularity ranges from data for individual statements to data for large
blocks of code, depending on the optimization level. At optimization level
0, the profiling is truly line level.

Basic Block At optimization levels above 0, code is broken into basic blocks, which are
groups of sequential statements without any conditional or looping
controls. Line level profile data is collected on basic blocks rather than
individual statements at these optimization levels.

Virtual Timer A statistical method for collecting time information by directly reading a
timer which is being incremented at a known rate on a processor by
processor basis.

Data Set A profile data file is considered to be a data set.

Host The system on which the PGPROF tool executes. This will generally be the
system where source and executable files reside, and where compilation is
performed.

Target Machine The system on which a profiled program runs. This may or may not be the
same system as the host.

GUI Graphical User Interface. A set of windows, and associated menus, buttons,
scrollbars, etc., that can be used to control the profiler and display the
profile data.

2.1.2 Compilation
The following list shows driver switches that cause profile data collection calls to be inserted and
libraries to be linked in the executable file:

–Mprof=func insert calls to produce a pgprof.out file for function level data.

–Mprof=lines insert calls to produce a pgprof.out file which contains both function and
line level data.

The PGPROF Profiler 113

-Mprof=mpi Link in MPI profile library which intercepts MPI calls in order to record
message sizes and to count message sends and receives. Both line-level and
function-level profiling are valid with this switch. For example:
-Mprof=mpi,func

2.1.3 Program Execution

Once a program is compiled for profiling, it needs to be executed. The profiled program is
invoked normally, but while running it collects call counts and/or time data. When the program
terminates, a profile data file called pgprof.out is generated.

To profile an MPI program, use mpirun to execute the program which was compiled and linked
with the –Mprof=mpi switch. A separate data file is generated for each non-initial MPI process.
The pgprof.out file acts as the "root" profile data file. It contains profile information on the initial
MPI process and points to the separate data files for the rest of the processes involved in the
profiling run.

The pgmerge utility can be used to merge all data files produced by an MPI program into a single
file, pgprof.out. The other data files are removed. Data files, unless renamed, are written over by
subsequent invocations of PGPROF.

2.1.4 Profiler Invocation and Initialization

Running the PGPROF profiler allows the profile data produced during the execution phase to be
analyzed and initializes the profiler.

The PGPROF profiler is invoked as follows:

% pgprof [options] [-I srcdir] [datafile]

If invoked without any options or arguments, the PGPROF profiler looks for the pgprof.out data
file and the program source files in the current directory. The program executable name, as
specified when the program was run, is usually stored in the profile data file. If all program-related
activity occurs in a single directory, the PGPROF profiler needs no arguments.

If present, the arguments are interpreted as follows:

–s Read commands from standard input. On hosts that have a GUI, this causes
PGPROF to operate in a non-graphical mode. This is useful if input is
being redirected from a file or if the user is remotely logged in to the host

114 Chapter 2

system.

–Isrcdir Add a directory to the source file search path. The PGPROF profiler will
always look for a program source file in the current directory first. The –I
option can be used multiple times to append additional directories to the
search path. Directories will be searched in the order specified. It is
acceptable to leave white space between the –I and the srcdir arguments.

datafile A single datafile name may be specified on the command line. Specifying a
data file that has been generated for a non-initial MPI process is not
recommended. Using PGPROF, you can inspect profile information on a
subset of processes (if you so choose.)

An initialization file named .pgprofrc may be placed in the current directory. The data in this file
will be interpreted as command line arguments, with any number of arguments per line. A word
beginning with # is a comment and causes the rest of the line to be ignored. A typical use of this
file would be to specify multiple source directories. The .pgprofrc file is read after the command
line arguments have been processed. Any arguments provided on the invocation line will override
conflicting arguments found in the .pgprofrc file.

2.1.5 Virtual Timer

This data collection method employs a single timer, that starts at zero (0) and is incremented at a
fixed rate while the active program is being profiled. For multiprocessor programs, there is a timer
on each processor, and the profiler’s summary data (minimum, maximum and per processor) is
based on each processor’s time to run a function. How the timer is incremented and at what
frequency depends on the target machine. The timer is read from within the data collection
functions and is used to accumulate COST and TIME values for each line, function, and the total
execution time. The line level data is based on source lines; however, in some cases, there may be
multiple statements on a line and the profiler will show data for each statement.

Note: Due to the timing mechanism used by the profiler to gather data, information provided for
longer running functions will be more accurate than for functions that only execute for a short
percentage of the timer's granularity. Refer to the list of Caveats for more profiler limitations.

The PGPROF Profiler 115

2.1.6 Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

BYTES For HPF and MPI profiles only. This is the number of message bytes sent
and received by the function or line.

BYTES RECEIVED
For HPF and MPI profiles only. This is the number of bytes received by the
function or line in a data transfer.

BYTES SENT For HPF and MPI profiles only. This is the number of bytes sent by the
function or line.

CALLS This is the number of times a function is called.

COST This is the sum of the differences between the timer value entering and
exiting a function. This includes time spent on behalf of the current
function in all children whether profiled or not.

COUNT This is the number of times a line or function is executed.

COVERAGE This is the percentage of lines in a function that were executed at least
once.

LINE NUMBER For line mode, this is the line number for that line. For function mode, this
is the line number of the first line of the function.

MESSAGES For HPF and MPI profiles only. This is the number of messages sent and
received by the function or line.

RECEIVES For HPF and MPI profiles only. This is the number of messages received
by the function or line.

SENDS For HPF and MPI profiles only. This is the number of messages sent by the
function or line.

STMT ON LINE For programs with multiple statements on a line, data is collected and
displayed for each statement individually.

TIME This is only the time spent within the function or executing the line. The
TIME does not include time spent in functions called from this function or
line. TIME may be displayed in seconds or as a percent of the total time.

116 Chapter 2

TIME PER CALL This is the TIME for a function divided by the CALLS to that function.
TIME PER CALL is displayed in milliseconds.

The data provided by virtual timer profiling-based collection allows you to analyze relationships
between functions and between processors.

2.1.7 Caveats

Collecting performance data for programs running on high-speed processors and parallel
processors is a difficult task. There is no ideal solution. Since programs running on these
processors tend to operate within large internal caches, external hardware cannot be used to
monitor their behavior. The only other way to collect data is to alter the program itself, which is
how this profiling process works. Unfortunately, it is impossible to do this without affecting the
temporal behavior of the program. Every effort has been made to strike a balance between
intrusion and utility, and to avoid generating misleading or incomprehensible data. It would,
however, be unwise to assume the data is beyond question.

2.1.7.1 Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these
circumstances a function must consume at least a few seconds of CPU time to generate
meaningful line level times.

2.1.7.2 Optimization

At higher optimization levels, and especially with highly vectorized code, significant code
reorganization may have occurred within functions. Most line profilers deal with this problem by
disallowing profiling above optimization level 0. The PGPROF profiler allows line profiling at
any optimization level, and significant effort was expended on associating the line level data with
the source in a rational manner and avoiding unnecessary intrusion. Despite this effort, the
correlation between source and data may at times appear inconsistent. Compiling at a lower
optimization level or examining the assembly language source may be necessary to interpret the
data in these cases.

The PGPROF Profiler 117

2.2 X-Windows Graphical User Interface

The PGPROF X-Windows Graphical User Interface (GUI) is invoked using the command
pgprof. This chapter describes how to use the profiler with the GUI on systems where it’s
supported. There may be minor variations in the GUI from host to host, depending on the type of
monitor available, the settings for various defaults and the window manager used. Some monitors
do not support the color features available with the PGPROF GUI. The basic interface across all
systems remains the same, as described in this chapter, with the exception of the differences tied
to the display characteristics and the window manager used.

There are two major advantages provided by the PGPROF GUI.

Source Interaction
The PGPROF GUI lets you view the program source for any known
function in the line profiler window whether or not line level profile data is
available simply by selecting the function name. Since interpreting profile
data usually involves correlating the program source and the data, the
source interaction provided by the GUI greatly reduces the time spent
interpreting data. The GUI allows you to easily compare data on a per
processor basis, and identify problem areas of code based on processor
execution time differences for functions or lines.

Graphical Display of Data
It is often difficult to visualize the relationships between the various
percentages and execution counts. The GUI allows bar graphs to be
displayed which graphically represent these relationships. This makes it
much easier to locate the ‘hot spots’ while scrolling through the data for a
large program.

2.2.1 Command Line Switches and X-Windows Resources

PGPROF command line switches may be used to control some features of the GUI. These
command line switches may be used when the PGPROF profiler is invoked.

−bg <color> sets the display background color to color; the default is set by the Motif
libraries. For example: −bg blue

−fg <color> sets the display foreground color to color; the default is set by the Motif
libraries. For example: −fg black

118 Chapter 2

−bar <num> sets the width of bar graphs to num, in number of characters.

−source <num> sets the number of characters of the source program to display for line level
data to num.

−file <num> sets the number of characters of the filename to display to num.

−high <color> See definition below:
−medium <color>
−low <color>
−verylow <color>

Bar graphs are divided into four groups by length, at 25%, 50% and 75% of
the longest bar. These bar coloring options (−high, −medium, −low and
−verylow) let you set the color to use for these four bar groups.

−title <string> sets the window title to string.

Normal X-windows switches may also be used, such as –display and –geometry.

In addition to normal X-windows resources, PGPROF uses the following resources, which can be
set with the xrdb command.

pgprof.bar: num equivalent to –bar num

pgprof.source: num equivalent to –source num

pgprof.filename: num equivalent to –file num

pgprof.high: color equivalent to –high color

pgprof.medium: color equivalent to −medium color

pgprof.low: color equivalent to –low color

pgprof.verylow: color equivalent to –verylow color

pgprof.foreground: color
 equivalent to –fg color

pgprof.background: color
 equivalent to –bg color

pgprof.browser: path sets the path to the web browser used to browse the
help page.

pgprof.helppage: http-address
 the http-address of the PGPROF HTML help page.

The PGPROF Profiler 119

pgprof.browserdirect: command
 a printf format string used to construct the
 arguments to the browser; use %s (percent signs)
 where the http-address should appear.

2.2.2 Using the PGPROF X-Windows GUI

The profiler window is divided into five areas from top to bottom, as follows: the Menu Bar area,
the Title area, the Sort/Select area, the Display area and the Messages area. The illustration in
figure 7-1 depicts a function-level profile window with two processes.

Figure 2-1: Profiler Window

120 Chapter 2

The Menu Bar contains File, Options, Sort, Select, Processes (or Threads), View, and Help menus.
The Menu Bar optionally contains a SingleProcess menu. Any of these menus can be selected with
a mouse click or by keyboard shortcuts. For example, use Alt+F for File. All menus have tear-off
mode enabled. This is performed by clicking on the dashed line on the top of each menu.

• The Title area displays the name of the executable as well as the date and time the executable
was created. To the right, it also displays the total execution time of the run, the number of
processes or processors it used and the date and time of the run.

• The Sort/Select area allows you to re-sort the functions or select subsets of the functions
based on time, cost, coverage, or other properties; line mode windows do not have a
Sort/Select area.

• The Messages area contains a scrollable display with informational messages from the
PGPROF profiler.

2.2.2.1 File Menu

The File menu permits the following actions:

Open <Ctrl+O> Opens a file-selection window to allow you to select a new profiler output
file to display. The new data is displayed in a new window.

Merge Opens a file-selection window to allow you to select a profiler output file to
merge with the current file. The merged execution times are added for each
function and line. The merged file must have been created with the same
program and executable.

Print Sends the data in the Display area to a printer.

Print to File
Prints the data in the Display area to a file.

Append to File
Appends the data in the Display area to the file most recently created by
the Print to File action.

Close <Ctrl+C>
Closes the current PGPROF window.

Quit <Ctrl+Q>
Closes all PGPROF windows and exits the application.

The PGPROF Profiler 121

2.2.2.2 Options Menu

The Options menu controls the following options:

Printer Options
Allows you to select the printer command used for the Print action. The
default is “lpr”.

Help Options
Allows you to change the path to the browser and help page used for
interactive help.

Source Directory
Allows you to add another directory to the search path for source files.

2.2.2.3 Sort Menu and The Sort Option Box

The Sort menu and the Sort option box in the Sort/Select area allow you to sort the functions
by any of several keys. The Sort menu and Sort option box give the same functionality. The
Sort menu is not available for line-level windows. The sort keys are:

Name function name (alphabetical)

File Name name of the source file (alphabetical).

Calls number of calls to this function (numerical).

Time execution time spent in this function.

Cost execution time spent in this function and all functions called from this
function.

Coverage percentage of lines in this function that were executed.

Time/Call ratio of Time and Calls.

Messages for HPF and MPI profiles, the number of messages sent and received.

Messages Sent
for HPF and MPI profiles, the number of messages sent.

Messages Received
for HPF and MPI profiles, the number of messages received.

Bytes for HPF and MPI profiles, the length of all messages sent and received in

122 Chapter 2

bytes.

Bytes Sent for HPF and MPI profiles, the length of all messages sent in bytes.

Bytes Received
for HPF and MPI profiles, the length of all messages received in bytes.

2.2.2.4 Select Menu and The Select Option Box

The Select menu and the Select option box in the Sort/Select area allow you to select a
subset of the functions by any one of several properties. The Select menu and Select option
box give the same functionality. The Select menu is not available for line-level windows. The
selection options are:

All all functions are displayed.

Calls only functions with more than N calls are displayed. Setting the value N is
described at the end of this subsection.

Time only functions taking more than N% of the total execution time are
displayed. Setting the value N is described at the end of this subsection.

Coverage only functions with coverage less than N% coverage are displayed. Setting
the value N is described at the end of this subsection.

Executed only functions that were actually executed are displayed.

Unexecuted only functions that were never called are displayed.

The value N used in the description of Calls, Time and Coverage above can be set by typing
into the text window in the Sort/Select area or by clicking on the up/down arrows next to that
text window.

2.2.2.5 Processes Menu

For HPF and MPI profiles, the Processes menu allows you to choose which processor data to
display. One or more options may be selected. The options are:

Maximum displays the maximum value (time, cost, calls, count, etc.) from among all
processes.

Average displays the average value of all processes.

The PGPROF Profiler 123

Minimum displays the minimum value from among all processes.

Sum displays the sum of values for all processes.

All displays data for each processor for each function or lines displayed. One
line is used for each processor.

Note: if many processes were used, the display can be quite long.

Individual opens a selection window allowing you to select individual processor data
to display.

None turns off individual processor displays. Note that only one of All,
Individual and None may be selected.

2.2.2.6 SingleProcess Menu

The Menu Bar includes a SingleProcess menu when PGPROF detects a process that employed
more than one thread of execution during a profiling run. SingleProcess lists all processes that
participated in the run of the program. Selecting a process from the SingleProcess list spawns a
new window, which displays the function-level profile data for that process and each of its SMP
threads. The new window has the same format and function as the initial profile window except
that it focuses on the selected process only and contains a Threads menu to view the profile data
of particular threads.

2.2.2.7 Threads Menu

The Menu Bar includes a Threads menu instead of a Processes menu inside of a process window
that is spawned by selecting from the SingleProcess menu. The Threads menu allows you to
choose which thread data to display for the selected process. One or more options may be selected.
The options are:

Maximum displays the maximum value (time, cost, calls, count, etc.) from among
all threads for a given process.

Average displays the average value of all threads for a given process.

Minimum displays the minimum value from among all threads for a given
process.

Sum displays the sum of values for all threads for a given process.

124 Chapter 2

All displays data for each thread for each function or line for a given
process. One line is used for each thread.

Note: If many threads were used, the display can be quite long.

Individual opens a selection window allowing you to select individual thread data
to display for a given process.

None turns off individual thread displays. Note that only one of All,
Individual and None may be selected.

2.2.2.8 View Menu

The View menu lets you select which data to display. The data that may be viewed for functions
include:

Filename name of the source file containing the function.

Line Number line number where the function starts in the source file.

Name name of the function.

Processor for HPF and MPI profiles, the processor number to which this data line
corresponds, or the string “max”, “avg”, “min” or “sum”.

Calls number of calls to the function. This may be displayed numerically or as a
bar chart.

Time time spent in this function. This may be displayed numerically in seconds
or as a percent of total time; or it may be displayed as a bar chart. It may
also be displayed as Time Per Call numerically in milliseconds or as a bar
chart.

Cost time spent in this function and all functions called from this function. This
may be displayed numerically in seconds or as a percent of total time; or it
may be displayed as a bar chart.

Coverage number of lines that were actually executed. This may be displayed
numerically as a line count or as a percent of actual coverage; or it may be
displayed as a bar chart.

Messages for HPF and MPI profiles, the number of messages total, or sent, or
received; all either numerically or as a bar chart. Additionally, messages
that were executed on the same processor as copies may be displayed
numerically or as bar charts.

The PGPROF Profiler 125

Bytes for HPF and MPI profiles, the total length of all messages in bytes, or
messages sent, or messages received; all either numerically or as bar charts.
Additionally, the bytes count for messages that were executed on the same
processor as copies may be displayed.

Figure 2-2: View Menu

The illustration above shows an individual source line window. Selecting a function name from
the function-level profile window and invoking it, usually by double-clicking, will cause a line-
level source window to be displayed. The data that may be viewed for individual source lines is:

Line Number line number in the file.

Stmt/on/Line
for programs with multiple statements on one line.

Source the program source text.

Processor for HPF and MPI profiles, the processor number to which this data line
corresponds, or the string “max”, “avg”, “min”, “sum”.

Counts the number of times this line was executed. This may be displayed

126 Chapter 2

numerically or as a bar chart.

Time the time spent executing this line. The Seconds may be displayed
numerically, as a percent of total time, or as a bar chart. Alternately, Time
per Count may be displayed numerically in milliseconds or as a bar chart.

Cost time spent executing this line and all functions called from this line. This
may be displayed in Seconds, as a Percent of Cost or as a Bar Chart.

Messages for HPF and MPI profiles, the number of messages total, or sent, or
received; all either numerically or as a bar chart. Additionally, messages
that were executed on the same processor as copies may be displayed
numerically or as bar charts.

Bytes for HPF and MPI profiles, the total length of all messages in bytes, or
messages sent, or messages received. This may be displayed either
numerically or as bar charts. Additionally, the bytes count for messages that
were executed on the same processor as copies may be displayed.

2.2.2.9 Help Menu

The Help menu has two options:

About this option opens a window giving version information about PGPROF.

Index this option starts up a WWW browser to interactively browse the PGPROF
help page.

2.3 Command Language

The interface for non-GUI versions of the PGPROF profiler is a simple command language. This
command language is available in GUI versions of the profiler using the –s option. The language
is composed of commands and arguments separated by white space. A pgprof> prompt is issued
unless input is being redirected.

2.3.1 Command Usage

This section describes the profiler’s command set. Command names are printed in bold and may
be abbreviated as indicated. Arguments contained in [and] are optional. Separating two or more
arguments by | indicates that any one is acceptable. Argument names in italics are chosen to

The PGPROF Profiler 127

indicate what kind of argument is expected. Argument names which are not in italics are
keywords and should be entered as they appear.

d[isplay] [display options] | all | none
Specify display information. This includes information on minimum
values, maximum values, average values, or per processor data.

he[lp] [command]
Provide brief command synopsis. If the command argument is present only
information for that command will be displayed. The character "?" may be
used as an alias for help.

h[istory] [size]
Display the history list, which stores previous commands in a manner
similar to that available with csh or dbx . The optional size argument
specifies the number of lines to store in the history list.

l[ines] function [[>] filename]
Print (display) the line level data together with the source for the specified
function. If the filename argument is present the output will be placed in the
named file. The '>' means redirect output, and is optional.

lo[ad] [datafile]
Load a new dataset. With no arguments reloads the current dataset. A
single argument is interpreted as a new data file. With two arguments, the
first is interpreted as the program and the second as the data file.

m[erge] datafile
Merge the profile data from the named datafile into the current loaded
dataset. The datafile must be in standard pgprof.out format, and must have
been generated by the same executable file as the original dataset (no
datafiles are modified.)

pro[cess] processor_num
For HPF profiles, specify the processor number of the data to display.

128 Chapter 2

p[rint] [[>] filename]
Print (display) the currently selected function data. If the filename argument
is present the output will be placed in the named file. The '>' means redirect
output, and is optional.

q[uit] Exit the profiler.

sel[ect] coverage | covered | uncovered | all [[<] cutoff]
This is the coverage mode variant of the select command. The cutoff
value is interpreted as a percentage and is only applicable to the
coverage option. The '<' means less than, and is optional. The default is
coverage < 100%.

sel[ect] calls | time/call | time | cost | all [[>] cutoff]
You can choose to display data for a selected subset of the functions.
This command allows you to set the selection key and establish a cutoff
percentage or value. The cutoff value must be a positive integer, and
for time related fields is interpreted as a percentage. The '>' means
greater than, and is optional. The default is time > 1%.

si[ngleprocessl] process_num
For multiptocess profiles, focus on a single process.

sh[ell] arg1, arg2, argn...
For a shell using the given arguments.

so[rt] [by] calls | time/call | time | cost | name
(Profile Mode) Function level data is displayed as a sorted list. This
command establishes the basis for sorting. The default is time.

so[rt] [by] coverage | name
This is the coverage mode variant of the sort command. The default is
coverage, which causes the functions to be sorted based on
percentage of lines covered, in ascending order.

src[dir] directory
Add the named directory to the source file search path. This is useful if
you neglected to specify source directories at invocation.

s[tat] [no]min|[no]avg|[no]max|[no]proc|[no]all]
Set which HPF fields to display or do not display with the no versions.

th[read] thread_num.
Specify a thread for a multithreaded process profile.

The PGPROF Profiler 129

t[imes] raw | pct
Specify whether time related values should be displayed as raw
numbers or as percentages. The default is pct. This command does not
exist in coverage mode.

!! repeat previous command.

! num repeat previous command numbered num in the history list.

!-num repeat the num-th previous command numbered num in the history list.

! string repeat the most recent previous command starting with string from the
history list.

Index 131

Index

Audience Description ... 1
Clock Granularity ... 116
Command Set ... 88
Configurable Wait mode 93
Conformance to Standards.................................. 1
Conventions.. 3
Debug Modes 80, 97, 98
Debugging Parallel Programs with PGDBG..... 70
Disabling OpenMP Event Support 104
Dynamic vs. Static P/t-sets 85
Global Commands .. 90
HPF... 1
Levical blocks... 11
Manual organization... 2
MPI

debugging ... 76, 105
groups ... 106
listener process 17, 105, 106
message queues....................................... 106
MPI-CH Support....................................... 77
support .. 69

Multilevel debugging.. 82
OpenMP.. 1

Debugging .. 102
debugging serial vs. parallel region 103
disabling event support 104
OpenMP and Linuxthread Support 68

P/t-set
commands... 86
notation... 83

Parallel Statements ... 101
parallel compound/block statements....... 101
parallel if, else statements....................... 101
parallel while statements 102

return statements..................................... 102
PGDBG

C++ debugging ... 21
commands................................. 8, 22, 50, 88
core files ... 22
debug modes 80, 97, 98
debugger ... 5
debugging parallel programs 70
dynamic vs. static P/t-sets......................... 85
events.. 12
expressions.. 15
Fortran arrays.. 18
Fortran common.. 18
Fortran debugging..................................... 18
global commands 90
Graphical presentation of threads and
processes... 69
graphical user interface............................. 61
initialization files .. 6
invocation ... 6
Limitations.. 107
MPI debugging ... 76
MPI support .. 69
MPI-CH support 77
multilevel debugging 82
name of main routine 18
operators ... 18
P/t-set Commands..................................... 86
P/t-set notation.. 83
Parallel Debug Capabilities 68
parallel debugging 80
process and thread-control 69
process level commands 88
process parallel debugging........................ 74

132 Index

processes and threads.......................... 70, 91
Process-only debugging............................ 81
register symbols.. 9
scope rules .. 9
source code locations................................ 10
starting up ... 6
statements ... 12
status messages ... 97
thread level commands 89
thread parallel debugging 71
Threads-only debugging 81
user defined events 98
wait behavior .. 95
wait modes.. 94

PGDBG Commands
command prompt 75, 80, 85, 97
conversions ... 43
events.. 26
memory access.. 41
miscellaneous.. 44
printing and setting variables.................... 35
process control .. 22
program locations 33
register access ... 40
scope ... 39
symbols and expressions........................... 37

PGPROF
commands... 126
file menu... 120
graphical user interface........................... 117
help menu ... 126
invocation ... 113
optimization .. 116
options menu... 121
overview ... 111
processes menu 122
profile data.. 115
profiler window 120
select menu ... 122
single process menu................................ 123
sort menu .. 121
threads menu... 123
view menu .. 124
X-Windows resources............................. 117

PGPROF Command-line options
-I ... 114

-s ... 113
PGPROF Commands

help ... 127
lines... 127
load ... 127
merge .. 127
print .. 127
quit .. 127
select ... 128
sort .. 128
srcdir... 128
stat .. 128
times.. 128

Process
process control .. 105
process level commands 88
process-only debugging 81
synchronization....................................... 105

Processes and Threads 70
sets .. 82

Process-Parallel Debugging.............................. 74
Profiling

basic block .. 112
command-level interface......................... 126
compilation ... 112
coverage.. 112
data set .. 112
function level .. 112
host ... 112
line level ... 112
optimization .. 116
PGPROF ... 111
sampling.. 112
target machine... 112
virtual timer 112, 114

Related Publications ... 3
Serial vs. Parallel Regions 103
Status Messages .. 96
Synchronization .. 105
System Requirements ... 4
Threads

thread level commands 89
thread-parallel debugging 71, 80
threads-only debugging............................. 81

Virtual timer ... 114

Index 133

	Table of Contents
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Related Publications
	System Requirements

	The PGDBG Debugger
	1.1 Definition of Terms
	1.1.1 Compiler Options for Debugging

	1.2 Invocation and Initialization
	1.3 Command-Line Arguments
	1.4 Command Language
	1.4.1 Constants
	1.4.2 Symbols
	1.4.3 Scope Rules
	1.4.4 Register Symbols
	1.4.5 Source Code Locations
	1.4.6 Lexical Blocks
	1.4.7 Statements
	1.4.8 Events
	1.4.9 Expressions

	1.5 Signals
	1.5.1 Signals Used Internally by PGDBG

	1.6 Debugging Fortran
	1.6.1 Arrays
	1.6.2 Operators
	1.6.3 Name of Main Routine
	1.6.4 Fortran Common Blocks
	1.6.5 Nested Subroutines
	1.6.6 Fortran 90 Modules

	1.7 Debugging C++
	1.8 Core Files
	1.9 PGDBG Commands
	1.9.1 Commands
	1.9.1.1 Process Control
	1.9.1.2 Process-Thread Sets
	1.9.1.3 Events
	1.9.1.4 Program Locations
	1.9.1.5 Printing and Setting Variables
	1.9.1.6 Symbols and Expressions
	1.9.1.7 Scope
	1.9.1.8 Register Access
	1.9.1.9 Memory Access
	1.9.1.10 Conversions
	1.9.1.11 Miscellaneous

	1.10 Commands Summary
	1.10.1 Command Summary

	1.11 Register Symbols
	1.11.1 X86 Register Symbols
	1.11.2 AMD64 Register Symbols

	1.12 X-Windows Graphical User Interface
	1.12.1 Main Window
	1.12.2 Disassembly Window
	1.12.3 Register Window
	1.12.4 Memory Window
	1.12.5 Custom Window
	1.12.5.1 Setting the Font

	1.13 PGDBG: Parallel Debug Capabilities
	1.13.1 OpenMP and Linuxthread Support
	1.13.2 MPI Support
	1.13.3 Process & Thread Control
	1.13.4 Graphical Presentation of Threads and Processes

	1.14 Debugging Parallel Programs with PGDBG
	1.14.1 Processes and Threads
	1.14.2 Thread-Parallel Debugging
	1.14.3 Graphical Features
	1.14.4 Process-Parallel Debugging

	1.15 Thread-parallel and Process-parallel Debugging
	1.15.1 PGDBG Debug Modes and Process/Thread Identifiers
	1.15.2 Threads-only debugging
	1.15.3 Process-only debugging
	1.15.4 Multilevel debugging
	1.15.5 Process/Thread Sets
	1.15.6 P/t-set Notation
	1.15.7 Dynamic vs. Static P/t-sets
	1.15.8 Current vs. Prefix P/t-set
	1.15.9 P/t-set Commands
	1.15.10 Command Set
	1.15.11 Process and Thread Control
	1.15.12 Configurable Stop Mode
	1.15.13 Configurable Wait mode
	1.15.14 Status Messages
	1.15.15 The PGDBG Command Prompt
	1.15.16 Parallel Events
	1.15.17 Parallel Statements

	1.16 OpenMP Debugging
	1.16.1 Serial vs. Parallel Regions
	1.16.2 Disabling PGDBG's OpenMP Event Support

	1.17 MPI Debugging
	1.17.1 Process Control
	1.17.2 Process Synchronization
	1.17.3 MPI Message Queues
	1.17.4 MPI Groups
	1.17.5 MPI Listener Processes
	1.17.6 SSH and RSH

	1.18 Limitations
	1.18.1 PGDBG Limitations—Parallel Debugging
	1.18.2 Other Limitations
	1.18.3 Private Variables

	The PGPROF Profiler
	2.1 Introduction
	2.1.1 Definition of Terms
	2.1.2 Compilation
	2.1.3 Program Execution
	2.1.4 Profiler Invocation and Initialization
	2.1.5 Virtual Timer
	2.1.6 Profile Data
	2.1.7 Caveats
	2.1.7.1 Clock Granularity
	2.1.7.2 Optimization

	2.2 X-Windows Graphical User Interface
	2.2.1 Command Line Switches and X-Windows Resources
	2.2.2 Using the PGPROF X-Windows GUI
	2.2.2.1 File Menu
	2.2.2.2 Options Menu
	2.2.2.3 Sort Menu and The Sort Option Box
	2.2.2.4 Select Menu and The Select Option Box
	2.2.2.5 Processes Menu
	2.2.2.6 SingleProcess Menu
	2.2.2.7 Threads Menu
	2.2.2.8 View Menu
	2.2.2.9 Help Menu

	2.3 Command Language
	2.3.1 Command Usage

	Index

