

PGI® CDK™ 5.1
Cluster Development Kit®

Installation
& Release Notes
5.1-3

The Portland Group™ Compiler Technology.
STMicroelectronics, Inc
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070
www.pgroup.com

While every precaution has been taken in the preparation of this document,
The Portland Group™ Compiler Technology, STMicroelectronics, Inc.
(PGI®) makes no warranty for the use of its products and assumes no
responsibility for any errors that may appear, or for damages resulting from
the use of the information contained herein. PGI retains the right to make
changes to this information at any time, without notice. The software
described in this document is distributed under license from
STMicroelectronics, Inc. and may be used or copied only in accordance
with the terms of the license agreement. No part of this document may be
reproduced or transmitted in any form or by any means, for any purpose
other than the purchaser's personal use without the express written
permission of PGI.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this manual, PGI was aware of a trademark claim. The designations have
been printed in caps or initial caps.

PGF90 is a trademark and PGI, PGHPF, PGF77, PGCC, PGPROF, and
PGDBG are registered trademarks of The Portland Group Compiler
Technology, STMicroelectronics, Inc. Other brands and names are the
property of their respective owners.

PGI 5.1 Cluster Development Kit (CDK™)
Installation & Release Notes

Copyright © 2003

The Portland Group™ Compiler Technology
STMicroelectronics, Inc. - All rights reserved.

 Printed in the United States of America

First Printing: Release 5.1, December 2003

Technical support: trs@pgroup.com
 http://www.pgroup.com

 Table of Contents

TABLE OF CONTENTS.. I

1 PGI CDK 5.1 INSTALLATION NOTES..2
1.1 INTRODUCTION ..5
1.2 INSTALLING ON LINUX86 OR LINUX86-6410
1.3 USING FLEXLM ON LINUX ..16

2 USING THE OPEN SOURCE CLUSTER UTILITIES................21
2.1 RUNNING AN MPI-CH PROGRAM ..21
2.2 MORE ABOUT PBS ..24
2.3 LINKING WITH SCALAPACK ..25
2.4 TESTING AND BENCHMARKING ..26

3 PGI CDK 5.1 RELEASE NOTES ...29
3.1 SUPPORTED SYSTEMS AND LICENSING...29
3.2 PGI CDK 5.1 CONTENTS ...30
3.3 NEW FEATURES FOR 32-BIT X86 AND AMD64.............................32
3.4 NEW FEATURES EXCLUSIVE TO AMD64......................................34
3.5 NEW COMPILER OPTIONS...35

3.5.1 Getting Started ..35
3.5.2 New Linux Compiler Options..36

3.6 PGDBG AND PGPROF SUPPORT ..38
3.7 PROBLEMS CORRECTED IN RELEASE 5.139
3.8 5.1-3 PROBLEMS/LIMITATIONS ..47
3.9 AMD64 LARGE ARRAY SUPPORT..48

3.9.1 Practical Limitations of –mcmodel=medium......................49
3.9.2 Compiler Limitations of –mcmodel=medium......................50

PGI Cluster Development Kit 5.0 i

3.9.3 Large Array Example in C ... 51
3.9.4 Large Array Example in Fortran 53

3.10 THE PGI CDK 5.1 AND LIBPTHREAD.. 56
3.11 THE PGI CDK 5.1 AND GLIBC ... 56
3.12 THE PGI ACML, BLAS & LAPACK LIBS.................................. 57
3.13 OPENMP TUTORIAL .. 57
3.14 DEBUGGING WITH PGDBG ... 57

3.14.1 PGDBG 5.1 Features .. 58
3.14.2 PGDBG 5.1 Technical Information.................................... 60
3.14.2.1 Threads and Signals ... 60
3.14.2.2 Signals Used by Internally by PGDBG 60
3.14.3 Scoping ... 61
3.14.4 Lexical Blocks... 63
3.14.5 Private Variables.. 64
3.14.6 Graphical User Interface (GUI) Notes............................... 65
3.14.6.1 Setting the Font .. 66
3.14.6.2 Control-C from GUI... 66
3.14.6.3 Shared Object Files .. 67

4 PGHPF 5.1 .. 69
4.1 SUMMARY OF CHANGES.. 69
4.2 RESTRICTIONS... 70

5 CONTACTING PGI & ONLINE DOCUMENTATION............ 73

 Table of Contents ii

PGI Cluster Development Kit 5.1 1

1 PGI CDK 5.1
Installation Notes

A Cluster is a collection of compatible computers connected by a network.
The PGI CDK Cluster Development Kit supports parallel computation on
clusters of Intel Pentium 2/3/4 or AMD Athlon/AthlonXP/AthlonMP
compatible Linux workstations or servers interconnected by a TCP/IP-
based network such as ethernet or fast ethernet. With the PGI CDK
Release 5.1, the 64-bit AMD Opteron (AMD64 technology) processor-
based systems is supported as well.

The PGI CDK release is installed on a working cluster – it is not the
purpose of this product to create a cluster, or to troubleshoot one. The PGI
CDK release can be installed on a single node, and the node can be treated
as if it is a cluster.

Note that support for cluster programming does not extend to clusters
combining AMD64 cpu-based systems with 32-bit cpu-based systems,
unless all are running 32-bit applications built for a common set of working
x86 instructions.

Release 5.1 is the first production release of PGI CDK that supports
AMD64 technology processor-based systems, with large array addressing
in pgf77 and pgcc. These systems can utilize a 64-bit address space while
retaining the ability to run legacy 32-bit x86 executables at full speed.
Executables generated by 32-bit x86 compilers and tools, such as previous
releases of the PGCC, PGC++, PGF77, or PGF90 compilers from The
Portland Group Compiler Technology, or the open source gcc compiler for

 Installation Notes 2

32-bit Linux operating systems, can execute unchanged on AMD64
technology processor-based systems. Applications that are re-compiled to
take advantage of the new features of AMD64 technology processor-based
systems can realize significant performance improvements.

The PGI CDK Release 5.1 compilers have been enhanced to improve
performance of generated executables through improved global
optimization, vectorization and inter-procedural analysis (IPA). In
addition, scheduling and code generation optimizations have been
improved on 32-bit x86 targets, and a completely new code generator is
provided to optimize for AMD64 technology targets running 64-bit Linux.
Improved performance is reflected in executables generated for either 32-
bit x86 processor-based systems or AMD64 technology processor based
systems.

The PGI CDK Release 5.1 products can be installed in two types of code
development environments:

1. linux86 – 32-bit x86 processor-based Linux systems, with 32-bit
GNU tools, utilities and libraries used by the PGI CDK compilers
to assemble and link for execution.

2. linux86-64 – 64-bit AMD64 technology processor-based systems
running 64-bit SuSE Linux Enterprise Server 8, version 8.1,
including both 64-bit and 32-bit GNU tools, utilities and libraries
used by the PGI CDK compilers to assemble and link for
execution. In this environment, the PGI CDK Release 5.1
compilers can produce either AMD64 technology or legacy 32-bit
x86 Linux executables. The 32-bit development tools and
execution environment under linux86-64 are considered a cross
development environment for x86 processor based applications.

For purposes of this document, we will refer to applications compiled to
use the AMD64 technology 64-bit addressing abilities as linux86-64
executables, and programs compiled to run on Linux systems with 32-bit
x86 processors as linux86 executables. It is important to remember that in
a linux86-64 environment, both linux86-64 executables and linux86
executables will run successfully. However, it is not the case that linux86-
64 executables will run in a linux86 environment. Note that the compilers

PGI Cluster Development Kit 5.1 3

that create linux86-64 executables are linux86-64 executables themselves,
so it is not possible to install those compilers on any platform other than the
one described in 2 above.

The 5.1-3 release of the CDK marks the first support of the linux86-64
medium memory model that extends the individual data object size in
pgf77 or pgcc to beyond 2GB. Data objects of significantly greater size
can be handled within the constraints of the linux86-64 system’s
configuration (for example the amount physical memory resident on your
machine can limit the size of programs you can run).

It is anticipated that many users will want to build and run programs from
identical source code as either linux86 executables or as linux86-64
executables, except for the potential size of data structures. It is key that
these programs be ported to run as linux86 executables prior to building
them as linux86-64 executables, to ensure no 64-bit dependencies exist. As
a methodology for developing such applications, users can build programs
with PGI CDK Release 5.1 targeting 32-bit linux86 environments on an
AMD64 technology processor-based system running 64-bit Linux (cross-
compilation). These same applications can then be recompiled on an
AMD64 technology processor-based system running 64-bit Linux without
source code changes to target linux86-64 environments (native
compilation).

In general, developers should find migration to the linux86-64 environment
much easier when they can compile, profile, and debug a linux86
executable in one window while also compiling, profiling, and debugging
the same program, built as a linux86-64 executable, in a different window.
In fact, it is possible to incrementally migrate portions of an application to
the linux86-64 environment if the application comprises multiple
executables. For example, it is possible for a linux86 executable and a
linux86-64 executable running in a linux86-64 environment to
communicate using sockets.

For multi-process programming, like message passing programs set to
execute on a cluster, we provide both a 32-bit and a 64-bit set of MPICH
libraries, built for adding information useful in the cluster debugger pgdbg
and the cluster profiler pgprof, as well as being the inter-process
communication standard.

 Installation Notes 4

1.1 Introduction

You can view the online HTML interface to the PGI CDK using any web
browser. Enter the following URL in a web browser:

 file:/mnt/cdrom/index.htm

running on a Linux system with the PGI CDK CD-ROM inserted and
mounted on the CD-ROM drive. If you do not know how to insert and
mount a CD-ROM on your Linux system, see Step 3 below in section 1.2
or contact your system administrator.

Release 5.1 of the PGI CDK consists of the following PGI compilers and
tools, that will develop linux86 and linux86-64 executables:

• PGHPF data parallel High Performance Fortran compiler, in
versions that will run and produce code for execution in
linux86, and linux86-64 environments.

• PGF90 native OpenMP and auto-parallelizing Fortran 90
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development
environments.

• PGF77 native OpenMP and auto-parallelizing F77 compiler, in
versions that will run and produce code for execution in
linux86, and linux86-64 development environments.

• PGCC native OpenMP and auto-parallelizing ANSI and K&R C
compiler in versions that will run and produce code for
execution in linux86, and linux86-64 development
environments.

• PGC++ native OpenMP and auto-parallelizing ANSI C++
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.

• The Multi-process, Multi-thread supporting PGPROF graphical
profiler that will run on linux86 and linux86-64.

PGI Cluster Development Kit 5.1 5

• The Multi-process, Multi-thread supporting PGDBG graphical
debugger in versions that will run on linux86 and linux86-64
development environments.

the following open source clustering utilities:

• MPI-CH version 1.2.5, an implementation of the Message-
Passing Interface (MPI) standard, compiled for use with the PGI
compilers on Linux systems with a kernel revision of 2.2.10 or
higher. This is provided in both linux86 and linux86-64
versions for AMD64 cpu-based installations.

• ScaLAPACK linear algebra math library for distributed-memory
systems, including BLACS version 1.1 (the Basic Linear
Algebra Communication Subroutines) and ScaLAPACK version
1.7 for use with MPI-CH and the PGI compilers on Linux
systems with a kernel revision of 2.2.10 or higher. This is
provided in both linux86 and linux86-64 versions for AMD64
cpu-based installations.

• PBS portable batch queuing system from Veridian
Technologies, version 2.3.15, configured for Linux systems
with a kernel revision of 2.2.10 or higher. This is installed only
as a linux86 process, though linux86-64 executables can be
handled.

and the following documentation and tutorial materials:

• OSC Training Materials – an extensive set of HTML-based
parallel and scientific programming training materials
developed by the Ohio Supercomputer Center

• Complete online Documentation for the PGI compilers and tools
in a mixture of HTML and PDF.

• Online HPF tutorials that provide insight into cluster
programming considerations.

• Online Linux man pages for all of the supplied software

 Installation Notes 6

• A hard-copy CD-ROM media kit including the PGI User’s
Guide, MPI The Complete Reference, Volume 1, the High
Performance Fortran Handbook, How to Build a Beowulf, and a
printed copy of these release notes.

Generally, clusters are configured with a “master” node from which jobs
are launched and “slave” nodes that are used only for computation.
Typically, the master node is accessible from the general-purpose or
“public” network and shares a file system with the other computers on your
network using NFS. The master node and all of the slave nodes are
interconnected using a second “private” network that is only accessible
from computers that are part of the cluster. There are two common cluster
configurations:

1) The master node is used only for compilation and job submission,
and only the slave nodes are used for computation.

2) All nodes are used for computation, including the master node

To use MPI-CH in the first configuration, PBS should be installed.
Otherwise, the master node will be used as one of the computation nodes
by the mpirun command by default; it is possible to exclude the master
node in the second configuration if mpirun is invoked with the –nolocal
option (see the man page for mpirun). If you are using the first
configuration, it is possible to install MPI-CH and run parallel MPI or HPF
jobs without installing any of the other components. However, if you will
have multiple users running jobs on your cluster simultaneously, you will
likely want to use PBS to ensure your cluster nodes are allocated and used
efficiently.

Typically, a master node has two network cards to allow communication to
the outside network as well as to the cluster nodes themselves, which may
be on their own subnet. If this is the case on your cluster, then when the
installation script prompts you for the name of the master node, you should
use the name associated with the network card connected to the cluster
nodes.

Also, it is important to note that in order for MPI-CH and PBS to run

PGI Cluster Development Kit 5.1 7

correctly, access from each node to every other node must be available via
the ‘rsh’ or ‘ssh’ command. For example, if a 3-node cluster consists of a
master and 2 slaves named master, node1, node2, then as a user you should
be able to issue the commands:

% rsh master date
% rsh node2 date

or

% ssh master date
% ssh node2 date

From node1, and similarly from node2 and master.

By default, all of the PGI compilers and tools will be installed on your
system. You will select which of the open source components to install.
At this point, you should have determined:

• Which PGI CDK open source components you will install (see
above for a list of these)

• The hostnames of all the nodes that will be included in your
cluster - you will need a list of these during the installation

• Whether the master node will be strictly a front-end for
compilation, job launching, etc or whether it will participate as a
compute node

• If you are installing PBS, which users at your site will have PBS
queue manager permissions (you will need their usernames)

• Whether the compute nodes can share files with the master node
(this is strongly recommended)

Section 1.2 below describes how to install the PGI Fortran, C and C++
compilers and tools on Linux using the installcdk script from the PGI CDK
CD-ROM. NOTE: you must have root permissions to successfully execute

 Installation Notes 8

the installcdk script. You must install the software as specified in section
1.2 and then follow the instructions in section 1.3 for configuring and
starting the FLEXlm license daemon.

The FLEXlm license daemon enables use of the PGI compilers and tools by
any user on any system networked to the system on which the PGI software
is installed. For example, users can compile, debug, and profile using the
PGI CDK compilers and tools on any system on your general-purpose
network, subject to the constraints on concurrent usage for the product you
have purchased.

Sections 2.1 - 2.5 describe basic usage of the Open Source components of
the PGI CDK, including MPI-CH, the PBS batch queuing system,
ScaLAPACK libraries, and the example benchmark programs and tutorials.

For the first 60 days after your purchase, you may send technical questions
about the PGI CDK compilers and tools to the e-mail address
trs@pgroup.com. If you have purchased PGI’s Subscription Service, you
will have access to e-mail service for an additional 12 months and will be
notified by e-mail when maintenance releases occur and are available for
electronic download and installation. Contact PGI at sales@pgroup.com
for information about the PGI Subscription Service for the products you
have purchased.

MPI-CH, PBS, and ScaLAPACK, are all open source software packages
that are not formally supported by PGI. All source code for these
components is included on the PGI CDK CD-ROM in the cdk
subdirectory. Each of these components has end-user and implementer
documentation, generally in the form of printable postscript, along with the
source code. Support for these products is generally provided by their
respective user communities, which you can learn more about at the
following URLs:

• MPI-CH - http://www-unix.mcs.anl.gov/mpi/mpich
contains a wealth of information, including online documentation,
tutorials, FAQ files, patch distributions, and information on how
to submit bug reports to the MPI-CH developers.

• PBS - http://www.openpbs.org is the main site for the

PGI Cluster Development Kit 5.1 9

PBS product we integrate with the CDK.

• ScaLAPACK- http://www.netlib.org/scalapack contains
FAQ files and current distributions of ScaLAPACK.

Once you’ve completed installation of the PGI CDK, the MAILUSERS file
on the PGI CDK CD-ROM includes a simple text template for an
introductory e-mail to end-users of your cluster system. It explains how to
initialize one’s environment, access the man pages and documentation, and
execute a simple program on the cluster.

1.2 Installing on Linux86 or Linux86-64

Those familiar with previous releases of PGI CDK should note that the
installation directory structure has changed. The path to the PGI CDK 5.1
Release compilers must be modified accordingly.

For installation on an AMD64 technology processor-based system running
a linux86-64 execution and development environment, the PGI CDK
installation script will attempt to install both the linux86 version and
linux86-64 version of the compiler products requested. If the user specifies
/usr/pgi as the base directory, for example,

Name of directory Contents

/usr/pgi/linux86/5.1/bin linux86 versions of the compilers and
tools

/usr/pgi/linux86/5.1/lib linux86 versions of the libraries,
created on all platforms in the cluster.

/usr/pgi/linux86/5.1/liblf linux86-only large-file-support (-Mlfs)

 Installation Notes 10

http://www.netlib.org/scalapack

versions of the libraries.

/usr/pgi/linux86/5.1/include linux86 versions of header files

/usr/pgi/linux86-64/5.1/bin linux86-64 versions of the compilers
and tools

/usr/pgi/linux86-64/5.1/lib
linux86-64 versions of the libraries,
created on all platforms in the cluster.
Not to be used for
–mcmodel=medium development.

/usr/pgi/linux86-64/5.1/libso linux86-64 –fPIC libraries for –
mcmodel=medium support

/usr/pgi/linux86-64/5.1/include linux86-64 versions of header files

When the install script installs the linux86-64 versions on a supported
AMD64 technology processor-based system running a linux86-64
environment, the linux86 versions will be installed as well in a separate
area. The compilers and supporting components have the same names, and
the environment you target by default (linux86-64 or linux86) will depend
on the version of the compiler that comes first in your path.

Bring up a shell command window on your system. The instructions below
assume you are using csh, sh, ksh, or some compatible shell. Appropriate
modifications will be necessary when setting environment variables if you
are using a shell that is not compatible with one of these three.

Step 1 − Create the directory in which you wish to install the PGI CDK
Compilers and tools. NOTE: The installation directory you choose must
be accessible from all nodes in the cluster using a uniform pathname. In
the example below, we assume /usr/pgi which is the default installation
directory. However, installation can occur in any directory where you have
appropriate permissions. Please make sure that the installation directory
has the necessary ownership and permissions appropriate for your site by
using the chown and chmod commands.

PGI Cluster Development Kit 5.1 11

Set the environment variable PGI to the name of the installation directory.
Assuming csh:

 % setenv PGI /usr/pgi

Or, assuming sh, ksh, or bash:

 % export PGI=/usr/pgi

Step 2 − All software should fit into 250 MB of disk space. If you wish to
install all of the source code for the open source components of the PGI
CDK, about 350 MB of disk space is required. If you are installing on a
linux86-64 environment, add another 250MB of disk space. Verify that you
have sufficient space on the disk where your installation directory will be
located.

Step 3 − The installcdk script must be run to properly install the software,
and you must have root permissions to execute this script. If you do not
have root privileges, you will need to get help from your system
administrator during the installation process. If you are updating a previous
release, or wish to reinstall, it is a good practice to run uninstallcdk before
running installcdk.

If you are installing from a CD-ROM and you’re not sure how to access the
CD-ROM drive on your system, check with your system administrator.
Typically, you must insert the CD-ROM into the CD-ROM drive on the
master node and issue the following command:

 % mount /mnt/cdrom

while logged in as root to make the data on the CD-ROM accessible. Next,
issue the following command from your root window on the master node:

 % /mnt/cdrom/installcdk

NOTE: If you have difficulty running this script, especially on a
Slackware Linux system, check the permissions on /dev/null.
Permissions should be set to crw-rw-rw-. If they are not, reset them
using chmod and try running the install script again, or try ‘mount –o

 Installation Notes 12

exec /mnt/cdrom’. Otherwise, check and see whether the CDROM
was mounted with ‘noexec’ set. If so, unmount it and then mount it with
‘mount –o exec /mnt/cdrom’

The install script will install all of the binaries for the PGI compilers and
tools, MPI-CH, and ScaLAPACK in the $PGI directory tree in the
appropriate bin, include, lib, and man subdirectories. It will also install
PBS in the /usr/local/pbs and /var/spool/pbs directories, and start
the PBS daemons running on the master node and all of the compute nodes
in your cluster. You will be prompted for various information about how
to configure your cluster as the script executes. Once the installation script
has completed, exit the root login.

Step 4 − All of the PGI CDK compilers and development tools are license-
managed. The other components of the PGI CDK, including MPI-CH,
ScaLAPACK, and the PBS batch scheduler, are open source products that
are not license-managed.

If you choose to create a temporary demo license for the PGI compilers and
tools, the install script asks for your real name, your username, and your
email address. It then creates a fifteen-day license and prints a message
like this:

 NOTE: your evaluation license will expire in
 14 days, 23.6 hours. For a permanent license,
 please read the order acknowledgement that you
 received. Connect to https://www.pgroup.com/License
 with the username and password in the order
 acknowledgement.

 Name: <your name>
 User: <your username>
 Email: <your e-mail address>
 Hostid: PGI=9BF378E0131FF0C3CD37F6
 FLEXlm hostid: 00a024a3dfe7
 Hostname: yourhost.yourdomain.com
 Installation: /usr/pgi
 PGI Release: 5.1-3

The message above is also saved to the file $PGI/license.info for

PGI Cluster Development Kit 5.1 13

retrieval at a later time.

Once you have obtained your permanent license keys using your
personalized account on the PGI web page, place them in the file
$PGI/license.dat. Until the permanent license is obtained, the PGI
CDK compilers will only be usable under the username specified above
during generation of the temporary keys.

Step 5 − You can view the online HTML interface to the PGI CDK
documentation and tutorial materials using any web browser. Assuming
you use Netscape, issue the following command:

 % netscape $PGI/index.htm

You can view the online HTML manuals for the PGI compilers and tools
directly by issuing the following command:

 % netscape $PGI/doc/index.htm

You may want to place a bookmark on these locations for easy future
reference to the online manuals.

Step 6 − Once the temporary or permanent license file is in place, execute
the following commands to make the PGI CDK compilers accessible from
a normal user shell window.

Assuming csh, for linux86 executable development tools:

 % set path = (usr/pgi/linux86/5.1/bin\
 /usr/local/pbs/bin $path)

alternatively, for linux86-64 executable development tools:

 % set path = (usr/pgi/linux86-64/5.1/bin\
 /usr/local/pbs/bin $path)

and for the common documentation:
 % setenv MANPATH "$MANPATH":/usr/pgi/cdk/man:\
 /usr/local/pbs/man

 Installation Notes 14

Or, assuming sh or ksh, for linux86 executable development tools:

% export PATH=\

 /usr/pgi/linux86/5.1/bin:/usr/local/pbs/bin:$PATH

alternatively, for linux86-64 executable development tools:

% export PATH=\

 /usr/pgi/linux86-64/5.1/bin:/usr/local/pbs/bin:$PATH

and for the common documentation:

% export MANPATH=\

$MANPATH:/usr/pgi/man:/usr/local/pbs/man

Note: you may see a warning message when you set the MANPATH
environment variable if you do not already have MANPATH defined.

Each person who will be using the PGI CDK Fortran, C, and C++
compilers and tools should add the above commands to his or her startup
files (e.g. .cshrc) to enable access to the PGI compilers and tools by
default upon future logins. For license support (see 1.3) you might also
want to add the environment variable declarations for $PGI and
$LM_LICENSE_FILE

Step 7 − You can verify the release number of the compilers you have
installed using the −dryrun −V options on any of the compiler commands.
This will also show you the sequence of steps the compiler will use to
compile and link programs for execution on your system.

• For Fortran 77, use "pgf77 -V x.f"

• For Fortran 90, use "pgf90 -V x.f"

• For HPF, use "pghpf -V x.f"

• For C++, use "pgCC -V x.c"

PGI Cluster Development Kit 5.1 15

• For C, use "pgcc -V x.c"

Note that the files x.f or x.c need not exist in order for you to
successfully execute these commands to determine the release number,
although it will correctly report a missing source file.

The base installation of the PGI CDK is now complete. Follow the
directions in section 1.3 to enable floating license capability, and the
following sections for basic usage instructions for MPI-CH, PBS, and
ScaLAPACK.

1.3 Using FLEXlm on Linux

The PGI CDK Fortran, C, and C++ compilers and tools are license-
managed using the FLEXlm software license management system from
Globetrotter Software. The steps below describe how to set up and run
license daemons on the master node of your cluster. These daemons allow
the PGI CDK compilers to be used on any machine on your public
network, subject to the constraint on maximum number of concurrent users
as specified in your license. The master node will function as the license
“server”, distributing seats as requested for use on other computers on your
network.

Alternatively, if you already use other software products managed using
FLEXlm, you can incorporate the PGI products into the configuration you
use for license serving those products.

Step 1 − Install the PGI CDK compilers as described in section 1.2 above.

Step 2 − Once you have obtained permanent license keys (see section 1.2
above for how to obtain these), place them in a file named license.dat
in the $PGI directory. For example, the license.dat file should look
similar to the following:

 SERVER <hostname> <hostid> 7496
 DAEMON pgroupd <install_dir>/linux86/5.1/bin/pgroupd

 Installation Notes 16

 FEATURE pghpf-linux86 pgroupd 5.100 31-dec-0 1 \
 2B9CF0F163159E4ABE32 VENDOR_STRING=123456:16:cdk \
 HOSTID=<hostid> ck=49

 FEATURE pghpf-linux86-64 pgroupd 5.100 31-dec-0 1 \
 2B9CF0F163159E4ABE32 VENDOR_STRING=123456:16:cdk \
 HOSTID=<hostid> ck=49

It will include features for each of the PGI CDK compilers and tools.
<hostname> and <hostid> should match those you submitted to PGI and
<install_dir> must be changed to match the directory in which the
compilers are installed. In particular, <install_dir> should match the
value of $PGI as defined above. Note that this example contains an entry
for 32-bit pghpf product and one for the 64-bit pghpf product. If you have
linux86-64 products, make sure the license you generate has those entries
as well.

Note: Release 5.1 supports newer versions of flexlm daemons. These new
versions require all license features to be case-insensitive. We now have a
license feature called pgcpp instead of pgCC, and so older releases of
pgCC compilers will not be compatible with the new 5.1 license. Contact
trs@pgroup.com if you wish to have the 5.1 license work with 4.1 and 5.0
versions of pgCC.

Step 4 − When the license file is in place, execute the following commands
to make the PGI products you have purchased accessible. If you are not
using other products managed by FLEXlm, and have not previously set the
environment variable LM_LICENSE_FILE, issue the following command to
do so (assuming csh):

% setenv PGI /usr/pgi
% setenv LM_LICENSE_FILE $PGI/license.dat

Or, assuming sh, ksh, or bash:

% export PGI=/usr/pgi
% export LM_LICENSE_FILE=$PGI/license.dat

If you are using other products managed by FLEXlm, and have previously

PGI Cluster Development Kit 5.1 17

set the environment variable LM_LICENSE_FILE, either incorporate the
PGI license keys into your existing license file or issue the following
command to append the PGI license file to the definition of
LM_LICENSE_FILE (assuming csh):

% setenv LM_LICENSE_FILE \
"$LM_LICENSE_FILE":$PGI/license.dat

Or, assuming sh or ksh or bash:

% export LM_LICENSE_FILE= \
$LM_LICENSE_FILE:$PGI/license.dat

Each person who will be using the PGI CDK compilers should add the
above commands to his or her startup files to enable access to the PGI
compilers and tools by default upon future logins.

NOTE: If LM_LICENSE_FILE is not set or exported, and the node-locked
15-day temporary license file $PGI/PGIinstall still exists, then
$PGI/PGIinstall will be used for resolving compiler licenses.

Step 5 − You must now start the license manager daemon. Edit the shell
script template $PGI/linux86/5.1/bin/lmgrd.rc. If you have
installed the PGI CDK compilers in a directory other than /usr/pgi,
substitute the correct installation directory into the definition of the PGI
environment variable on line 3 of the script. Now exit the editor and issue
the following command to start the license server and PGI license daemon
running on your system:

 % lmgrd.rc start

If you wish to stop the license server and license daemon at a later time,
you can do so with the command:

 % lmgrd.rc stop

To make sure that the license server and PGI daemon are started each time
your system is booted, log in as root, set the PGI environment variable as
above, and then execute the following two commands:

 Installation Notes 18

% cp $PGI/linux86/5.1/bin/lmgrd.rc
/etc/rc.d/init.d/lmgrd

% ln -s /etc/rc.d/init.d/lmgrd /etc/rc.d/rc3.d/S90lmgrd

Note that your system’s default runlevel may be something other than ‘3’,
and if it is, that number should be used above in setting the correct
subdirectory. Run /sbin/runlevel to check the system’s runlevel. Note
also that if you're using a Linux distribution other than Red Hat, your rc
files may be in a directory other than /etc/rc.d. Some Linux
distributions, such as Red Hat and Mandrake, include the chkconfig(8)
utility that manages the runlevel scripts. If your system has this tool and
you wish to use it, then run the following commands:

 % cp $PGI/linux86/5.1/bin/lmgrd.rc /etc/rc.d/init.d
 % chkconfig -- add lmgrd.rc

The appropriate links will be created in the /etc/rc.d directory
hierarchy. For more information on chkconfig, please see the manual page.

In addition to the installcdk installation script, there are two additional
shell scripts that may be of use to you:

• uninstallcdk - uninstalls selected components of the PGI CDK.
This is useful, for example, if you wish to download an updated
version of one of the open source components and rebuild and
reinstall it on your cluster.

• restartpbs - shuts down and restarts all of the PBS daemons on
each node of your cluster. If you find that your default queue is
not operating properly for some reason, try restarting PBS using
this script to see if it fixes the problem.

As with the installcdk script, you must have root privileges in order to
execute these scripts.

Installation of your PGI CDK Fortran, C, and C++ compilers and tools for

PGI Cluster Development Kit 5.1 19

Linux is now complete. If you have difficulties with the installation, send
e-mail to trs@pgroup.com for assistance.

The following sections describe basic usage of the open source PGI CDK
clustering utilities.

 Installation Notes 20

2 Using the Open Source
Cluster Utilities

Copy the directory $PGI/bench to a local working area so you can try an
example program.

2.1 Running an MPI-CH Program

NOTE: you must either work in a directory which is file-shared with all of
the cluster nodes, or you must copy your MPI executables to a common
directory on all compute nodes before invocation of mpirun. In particular,
this precludes you from working in /tmp unless you copy the executable to
/tmp on each slave node prior to invocation of mpirun.

First, try the MPI “hello world” program in the bench/mpihello
subdirectory:

% cp -r $PGI/bench ./bench
% cd ./bench/mpihello
% pgf77 -o mpihello mpihello.f -lfmpich –lmpich
% mpirun mpihello
Hello world! I'm node 0
% mpirun -np 4 mpihello
Hello world! I'm node 0
Hello world! I'm node 2
Hello world! I'm node 1
Hello world! I'm node 3

PGI Cluster Development Kit 5.0 21

If you've installed PBS, you should also try submitting a batch job to make
sure your PBS default queue is operational. There is an example PBS batch
script for submission of the above “hello world” program in the
bench/mpihello subdirectory. It assumes you have a cluster with 4 or
more processors. You'll need to modify the batch script, mpihello.pbs,
to ensure the pathname information included is correct for your particular
installation.

IMPORTANT PBS NOTE 1
A batch job submitted using the PBS qsub command does not by default
inherit the environment of the spawning shell. Instead, PBS batch jobs
execute in an environment that is initialized based on the submitting user's
login/shell startup files. It may be the case that a user's home directory
and shell/startup files are not accessible from the slave nodes (which
generally are on their own private network). In this case, you must be
sure that each end-user of PBS has a valid home directory in the
/etc/passwd file on each cluster node (generally it is the sixth field of a
login entry in /etc/passwd). If the home directory entry for a given user on
any node is invalid, PBS jobs will quietly fail in ways that are difficult to
diagnose.

IMPORTANT PBS NOTE 2
In order for a PBS batch job to find the mpirun command, the necessary
path initialization must be performed. It is best to perform the initialization
either in each user's login/shell startup files as noted above, or in /etc on
each slave node if you want to initialize it globally. If you aren't sure how
to do this, contact your system administrator. Alternatively, you can use
the -v or -V options to qsub (see the qsub man page for more on these
options) to pass environment variables to the submitted job's environment,
or you can explicitly initialize the path environment variable within the
PBS batch script. The latter method is used in the example below. If the
environment of a given batch job is not properly initialized in one of these
ways, PBS jobs can fail to execute in ways that are difficult to diagnose.

 Open Source Utilities 22

Now, try submitting a PBS batch job using the following command:

% qsub mpihello.pbs
% qstat

You'll need to type qstat quickly in order to see the "mpihello" job in the
queue. Be sure to look at the mpihello.log file when the job completes
to see that the job has executed correctly. You should see output
something like the following:

% cat mpihello.log
Hello world! I'm node 0
Hello world! I'm node 2
Hello world! I'm node 1
Hello world! I'm node 3
%

If these simple tests don't work, refer to the IMPORTANT PBS NOTEs
above. Usually, it's either a problem with

• A user not having a valid home directory entry in
/etc/passwd on each cluster node

• An incorrectly initialized PATH variable in the shells
executing the PBS job

• Inability of one or more of the slave nodes to find "mpirun"
because the PGI software has been installed in a directory
which is not visible to them

If these simple tests do work, you're ready to execute some of the more
extensive tests listed below in section 2.5, Testing and Benchmarking.

The following sections include more detailed information on each of the
open source components of the PGI CDK.

PGI Cluster Development Kit 5.0 23

2.2 More About PBS

PBS (the Portable Batch-queuing System) is a very configurable batch
scheduler developed by the NASA Ames Research Center and Veridian
Technologies.

The installcdk script installs PBS for a space-shared cluster; that is,
multiple jobs can be run at the same time, but at most one job will use a
given node at any given time. Optionally, one node can be designated as a
front-end node (usually call the master node) that can be used to submit
jobs. Many more options are available; to learn more, read the PBS
Administration Guide, which is found in the cdk/pbs subdirectory of the
PGI CDK CD-ROM.

Check that the PBS man pages are properly installed by bringing up one of
the man pages:

% export MANPATH=/usr/local/pbs/man:$MANPATH
% man qsub

NOTE: you may have to stop and then re-start the default queue once after
PBS installation is complete and prior to running your first job. It's not
clear why this is necessary, but if your test job seems to queue up and not
run (you can check its status using the qstat command), try issuing the
following commands:

% qstop default
% qstart default

and then re-submitting the job. You must be registered as a PBS queue
manager or be logged in as root to execute these commands. If you need to
add queue managers at a later time, you may do so using the "qmgr"
command while logged in as root:

% qmgr
Qmgr: set server managers=<username>@<masternode>

 Open Source Utilities 24

Qmgr: quit

where <username> is replaced with the username of the person who will
become a queue manager, and <masternode> is replaced with the simple
hostname of the master node in your cluster. NOTE: In this case, the
hostname cannot be a full hostname. That is, if the full hostname of your
master node is *.pgroup.com, you would enter * in place of
<masternode> in the set server command.

As mentioned in the introduction, PBS is very configurable. The above
steps provide a simple means to install PBS and establish a single default
space-shared queue. We strongly encourage your cluster administrator to
print out the file cdk/pbs/pbs_admin_guide.ps and read through it to
learn more about PBS and how it can best be used on your cluster. There is
also a very active mail list for PBS, which you can learn more about by
browsing the main PBS web page at http://www.openpbs.org.

2.3 Linking with ScaLAPACK

The ScaLAPACK libraries are automatically installed as part of step 1
above. You can link with the ScaLAPACK libraries by specifying
–Mscalapack on any of the PGI CDK compiler command lines. For
example:

 % pgf77 myprog.f -Mscalapack

The -Mscalapack option causes the following libraries, all of which are
installed in $PGI/linux86/5.1/lib, to be linked in to your executable:

• scalapack.a

• blacsCinit_MPI-LINUX-0.a

• blacs_MPI-LINUX-0.a

• blacsF77init_MPI-LINUX-0.a

• libblas.a

PGI Cluster Development Kit 5.0 25

• libmpich.a

You can run a program that uses ScaLAPACK routines just like any other
MPI program. The version of ScaLAPACK included in the PGI CDK is
pre-configured for use with MPI-CH. If you wish to use a different BLAS
library, and still use the –Mscalapack switch, you will have to copy your
BLAS library into $PGI/linux86/5.1/lib/libblas.a.

Alternatively, you can just list the above set of libraries explicitly on your
link line. You can test that ScaLAPACK is properly installed by running a
test program as outlined below in section 2.4, Testing and Benchmarking.

2.4 Testing and Benchmarking

The directory bench on the PGI CDK CD-ROM contains various
benchmarks and tests. Copy this directory into a local working directory
by issuing the following command:

% cp -r $PGI/bench .

NAS Parallel Benchmarks - The NPB2.3 subdirectory contains version 2.3
of the NAS Parallel Benchmarks in MPI. Issue the following commands to
run the BT benchmark on 4 nodes of your cluster:

% cd bench/NPB2.3
% make BT NPROCS=4 CLASS=W
% cd bin
% mpirun -np 4 bt.W.4

There are several other NAS parallel benchmarks available in this
directory. Similar commands are used to build and run each of them. Try
building the Class A version of BT if you'd like to run a larger problem
(just substitute "A" for "W" in the commands above).

The example above runs the BT benchmark on 4 nodes, but does not use
the PBS batch queuing system. There is a pre-configured PBS batch file in
the NPB2.3/bin sub-directory. Edit the file, change the cd command in

 Open Source Utilities 26

the second to last line of the script to point to your local working directory,
and then try executing the following commands to run BT under control of
PBS:

% cd bin
% qsub bt.pbs

You can check on the status of your job using the qstat command.

The hpfnpb subdirectory contains versions of 5 of the NAS Parallel
Benchmarks coded in High Performance Fortran (HPF). README files
explain how to build and run each of these benchmarks on various
platforms. Use the instructions and makefiles in the linux86
subdirectories of each benchmark to test these programs on your cluster.

MPI-CH - These tests measure latency and bandwidth of your cluster
interconnect for MPI-CH messaging. To run these tests, execute the
following commands:

% cd mpi
% make
% mpirun -np 2 mpptest

For more information, the runmpptest script can be executed. PGI has
noted significant latency increases on Linux when messages larger than
about 7600 bytes are sent, so this script may take some time to run. See the
mpich/examples/perftest directory for more information.

ScaLAPACK - This test will time execution of the 3D PBLAS (parallel
BLAS) on your cluster:

% cd scalapack
% make
% mpirun -np 4 pdbla3tim

Matrix Multiplication - This test will time execution of a simple distributed
matrix multiply on your cluster:

PGI Cluster Development Kit 5.0 27

% cd matmul
% buildhpf
% mpirun -np 4 matmul_hpf

 Open Source Utilities 28

3 PGI CDK 5.1 Release
Notes

This document describes changes between PGI CDK 5.1 and previous
releases, as well as information not included in the current printing of the
PGI User’s Guide. See also http://www.pgroup.com/faq/new_rel.htm for
the most recent information not included here.

3.1 Supported Systems and Licensing

PGI CDK Release 5.1 is supported on 32-bit Intel Pentium II/III/4/Xeon
and AMD Athlon/AthlonXP (x86) processor-based systems, and 64-bit
AMD Opteron (AMD64 technology) processor-based systems running:

• A 32-bit linux86 environment with a kernel version of 2.2.10 or
above, including versions of Linux that use glibc2.2.x, such as
Red Hat 7.0 to 9.0, and SuSE 7.1 to 9.0.

• A 64-bit linux86-64 environment with a kernel version of 2.4.19
or above, including versions of Linux that use glibc2.2.5, such as
SuSE Linux Enterprise Server 8 (supported only on AMD64
technology processor-based systems), Suse 8.1, Suse 9.0, and Red
Hat Enterprise Linux 3.0 .

For more information about release levels and operating systems supported,
go to http://www.pgroup.com/faq/install.htm.

PGI Cluster Development Kit 5.1 29

http://www.pgroup.com/faq/new_rel.htm
http://www.pgroup.com/faq/install.htm

The PGI CDK Fortran, C, and C++ compilers are license managed. The
open source components of the PGI CDK, including MPI-CH,
ScaLAPACK, and PBS, are open source software packages that are not
license-managed. For the PGI CDK compilers, the FLEXlm license
manager controls the number of simultaneous users. When the PGI CDK
compilers are first installed, they are usable for 15 days without a license
key. Please contact PGI to obtain a permanent license key as soon as
possible.

To make the PGI CDK compilers operational, you will need to follow the
installation instructions in Section 1 above, including installation of the
license daemon.

3.2 PGI CDK 5.1 Contents

Release 5.1 of the PGI CDK consists of the following PGI compilers and
tools that will develop linux86 and linux86-64 executables:

• PGHPF data parallel High Performance Fortran compiler, in
versions that will run and produce code for execution in
linux86, and linux86-64 development environments.

• PGF90 native OpenMP and auto-parallelizing Fortran 90
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.

• PGF77 native OpenMP and auto-parallelizing F77 compiler, in
versions that will run and produce code for execution in linux86
and linux86-64 development environments.

• PGCC native OpenMP and auto-parallelizing ANSI and K&R C
compiler in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.

• PGC++ native OpenMP and auto-parallelizing ANSI C++
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.

• The Multi-process, Multi-thread supporting PGPROF graphical

 5.1 Release Notes 30

profiler that will run on linux86 and linux86-64.

• The Multi-process, Multi-thread supporting PGDBG graphical
debugger in versions that will run on linux86 and linux86-64
development environments.

Also, the following open source clustering utilities are provided:

• MPI-CH version 1.2.5, an implementation of the Message-
Passing Interface (MPI) standard, compiled for use with the PGI
compilers on Linux systems with a kernel revision of 2.2.10 or
higher. This is provided in both linux86 and linux86-64
versions for AMD64 cpu-based installations.

• ScaLAPACK linear algebra math library for distributed-memory
systems, including BLACS version 1.1 (the Basic Linear
Algebra Communication Subroutines) and ScaLAPACK version
1.7 for use with MPI-CH and the PGI compilers on Linux
systems with a kernel revision of 2.2.10 or higher. This is
provided in both linux86 and linux86-64 versions for AMD64
cpu-based installations.

• PBS portable batch queuing system from Veridian
Technologies, version 2.3.15, configured for Linux systems
with a kernel revision of 2.2.10 or higher. This is installed only
as a linux86 process, though linux86-64 executables can be
handled.

and the following documentation and tutorial materials:

• OSC Training Materials – an extensive set of HTML-based
parallel and scientific programming training materials
developed by the Ohio Supercomputer Center

• Complete online Documentation for the PGI compilers and tools
in a mixture of HTML and PDF.

• Online HPF tutorials that provide insight into cluster
programming considerations.

PGI Cluster Development Kit 5.1 31

• Online Linux man pages for all of the supplied software

• A hard-copy CD-ROM media kit including the PGI User’s
Guide, MPI The Complete Reference, Volume 1, the High
Performance Fortran Handbook, How to Build a Beowulf, and a
printed copy of these release notes.

3.3 New Features for 32-bit x86 and AMD64

Following are the new features included in PGI CDK 5.1:

• A number of optimizations have been made to improve 32-bit
x86 register allocation, vectorization, scalar arithmetic, loop
unrolling, function inlining, scheduling, interprocedural analysis
and optimization (IPA), and various other optimization phases
within the compilers. SPECFP2K performance on 32-bit x86
processor targets is improved by 42% over the PGI Workstation
Release 4.1, and SPECFP2K performance on AMD64
technology processor-based systems improves an additional
10% when re-compiled for linux86-64 execution. Performance
improvements in user-developed benchmarks or applications
will of course vary.

• Support for vectorization of loops that operate on integer data

• Fortran 90 language and runtime optimizations

• Tuned Fortran 90 intrinsic MATMUL support libraries for all
data types

• Additional interprocedural analysis and optimization (IPA)
enhancements for Fortran 90, specifically including propagation
of array shape information

• Improved interoperability with the Etnus TotalView debugger
on linux86 platforms.

• There are several enhancements to the PGDBG debugger:

1. When the –g compiler option is specified, the compilers

 5.1 Release Notes 32

emit debug information in DWARF2 format, improving
interoperability with 3rd party debuggers, and better
compatibility with gcc and g77.

2. PGDBG has made advances in internal information
management, so that large programs on large systems will
run more efficiently under PGDBG with faster load times
and event handling.

3. Thread handling has improved, and PGDBG navigates
threads with greater stability.

4. Source level debugging from shared libraries is now
supported. A shared object must be loaded before it can be
debugged using PGDBG.

• New installation directory structure. Users simply add
/usr/pgi/linux86/5.1/bin to their path, instead of
/usr/pgi/linux86/bin, when the install directory is /usr/pgi. Users
of the linux86-64 versions of the PGI Workstation compilers
add /usr/pgi/linux86-64/5.1/bin to their path to use the AMD64
technology version of the compilers and tools by default. This
change in directory structure enables installation and use of the
PGI Workstation compilers for both linux86 and linux86-64
targets on AMD64 technology processor-based systems. It will
also allow installation and use of multiple releases of the PGI
Workstation compilers and tools for all releases subsequent to
Release 5.0 (using the –V switch will tell you which release you
are using for a given compilation). Installing the 5.1 release in
/usr/pgi will not disturb the 5.0 release installation that was also
installed in /usr/pgi.

• ACML high-performance LAPACK and BLAS math libraries
bundled.

• Fully ISO-compliant C++, with the exception of exported
templates.

• Completely updated hardcopy and online documentation.

PGI Cluster Development Kit 5.1 33

• A new environment variable MP_WARN, to enable/disable
runtime openmp warning messages.

3.4 New Features Exclusive to AMD64

Following are the new features included in PGI CDK 5.1 that are specific
to AMD64 technology processor-based systems.

• Further tuning of the AMD64 code generator, resulting in
SPECFP2K Fortran benchmarks geometric mean improved by
over 8%, Polyhedron geometric mean improved by over 25%,
and significantly improved overall performance on the AMD
Core Math Library (ACML) relative to PGI Workstation 5.0-2.

• Support for the 64-bit linux86-64 execution environment and
the x86-64 medium memory model.

• Support for 64-bit addressing and aggregate data sets in excess
of the 2GB limit on 32-bit x86 processor-based. Single static
data objects larger than 2GB are now supported in PGF77 and
PGCC.

• Support for 64-bit integer arithmetic in hardware.

• Use of the extended general-purpose register set available on
AMD64 technology processors (16 general-purpose registers
instead of the 8 available on 32-bit x86 processor-based
systems).

• Use of the extended Streaming SIMD Extensions (SSE) register
set available on AMD64 technology processors (16 SSE
registers instead of the 8 available on 32-bit x86 processor-
based systems).

• Most 32-bit and 64-bit floating-point arithmetic is performed
using SSE instructions. Note: SSE instructions use standard
IEEE 32-bit and 64-bit arithmetic for floating point calculations

 5.1 Release Notes 34

and rounding behavior. The x87 floating-point stack used on
x86 processor-based systems uses IEEE 80-bit arithmetic for
register-to-register operations by default. As a result, arithmetic
results on AMD64 technology processor-based systems running
a linux86-64 environment should closely match results obtained
on most 32-bit and 64-bit RISC processor-based workstations.
These results can sometimes differ from those obtained on a 32-
bit x86 or AMD64 processor-based system running a linux86
environment, where scalar arithmetic is by default performed
using x87 instructions.

• Subroutine and function calling sequences are modified to
comply with the x86-64 Application Binary Interface, which can
be found online at http://www.x86-64.org/documentation.

• The linux86-64 compilers themselves are 64-bit applications,
and can only run on AMD64 technology processor-based
machines.

• PGDBG supports debugging of linux86-64 executables.

• PGPROF supports graphical display of linux86-64 profiled
output.

• In addition to SuSE Linux Enterprise Server 8 SP2, SuSE 9.0,
and RHEL 3.0. are now also supported linux86-64
environments.

• Support for the 64-bit linux86-64 execution environment

3.5 New Compiler Options

3.5.1 Getting Started

By default, the PGI CDK compilers generate code optimized for the type of
processor on which compilation is performed (the compilation host).
Typically, for best Fortran performance, you will want to use the PGF90

PGI Cluster Development Kit 5.1 35

http://www.x86-64.org/documentation

compiler (even for FORTRAN 77 code) and the –fastsse option. This
option is similar to –fast, but incorporates additional optimization options
to enable use of streaming SIMD (SSE/SSE2) instructions where
appropriate. In a future release of PGI CDK, the –fastsse option will be
deprecated in favor of a single –fast option which incorporates SSE/SSE2
optimizations. The contents of the –fastsse switch are host-dependent, but
typically include the options –O2 –Munroll –Mnoframe –Mlre –Mvect=sse
–Mcache_align. On some systems, –fastsse also includes –Mscalarsse and
–Mflushz.

In addition to –fastsse, the –Mipa=fast option for inter-procedural analysis
and optimization can improve performance. See the PGI User’s Guide for
details on how to use this option. In particular, note that –Mipa requires
two passes and that you must compile and link with –Mipa for it to be
effective.

You may be able to obtain further performance improvements by
experimenting with the individual –Mpgflag options detailed in the PGI
User’s Guide (–Mvect, –Munroll, –Minline, –Mconcur, etc). However,
speed-ups using these options are typically application and system-
dependent, so it is important to time your application carefully when using
these options to ensure no performance degradations occur.

For OpenMP programmers, runtime warnng messages can now be disabled
via the MP_WARN environment variable. Setting it to no will prevent
messages like “Warning OMP_NUM_THREADS greater than the number
of cpus” from being posted.

3.5.2 New Linux Compiler Options

The following compiler options have been added in PGI CDK Release 5.1:

• –Mlarge_arrays – applies only to the PGF77 compiler. This
option must be used, in combination with –mcmodel=medium,
when compiling F77 applications that use single data objects
larger than 2GB in size.

 5.1 Release Notes 36

• –Mdwarf1 | –Mdwarf2 – generate debug information in either the
DWARF1 or DWARF2 format. The Release 5.1 compilers
produce DWARF2 by default. Must be used with –g.

• –fast – has been modified to be equivalent to: –O2 –Munroll=c:1
–Mnoframe –Mlre.

• –fastsse – has been modified to be equivalent to: –fast –Mvect=sse
–Mscalarsse –Mcache_align –Mflushz.

• –Minline[={… | except:<func>}] – A new sub-option
except:<func> directs the compiler to not inline an entry func or
list of entries.

• –tp { k7 | k8-32 | k8-64 | piii | p5 | p6 | p7 | px } – Set the target
architecture. By default, the PGI Workstation compilers produce
code specifically targeted to the type of processor on which the
compilation is performed. In particular, the default is to use all
supported instructions wherever possible when compiling on a
given system. As a result, executables created on a given system
may not be useable on previous generation systems (for example,
executables created on a Pentium 4 may fail to execute on a
Pentium III or Pentium II). Processor-specific optimizations can
be specified or limited explicitly by using the −tp option. In this
way, it is possible to create executables that are useable on
previous generation systems. With the exception of k8-64, any of
these sub-options are valid on any x86 or AMD64 technology
processor-based system. The k8-64 sub-option is valid only on
AMD64 technology processor-based systems running a 64-bit
operating system. Following is a list of possible sub-options to –
tp, and the processors they are intended to target:

k7 generate 32-bit code for AMD AthlonXP and
compatible processors.

k8-32 generate 32-bit code for AMD64 technology and
compatible processors.

k8-64 generate 64-bit code for AMD64 technology and

PGI Cluster Development Kit 5.1 37

compatible processors.

piii generate 32-bit code for a Pentium III processor-
based system.

px generate 32-bit code that is useable on any x86
processor-based system.

p5 generate 32-bit code for Pentium and compatible
processors.

p6 generate 32-bit code for Pentium Pro/II and
compatible processors.

p7 generate 32-bit code for Pentium 4 and compatible
processors.

• The environment flag MP_WARN controls the runtime posting of
OpenMP warnings. ‘setenv MP_WARN no’ will prevent OpenMP
runtime warnings.

3.6 PGDBG and PGPROF Support

PGDBG is supported as a graphical debugger in both the linux86 and
linux86-64 execution and development environments. Like the compilers,
PGDBG for linux86-64 must run in a linux86-64 execution environment.
PGDBG for linux86 execution is a separate version, and it will also run in
the linux86-64 execution environment, but only with linux86 executables.
The linux86-64 version of PGDBG will only debug executables built to run
as linux86-64 executables. PGDBG for linux86-64 has been enhanced to
disassemble the AMD64 technology new instructions, and is more
compatible with gcc, g77, and g++ debug information.

PGPROF is a graphical display tool of profile information created through
execution of programs compiled and linked using –Mprof. Only a linux86
executable version of PGPROF is provided, but it is able to read either
types of profile output, and resides in both linux86 and linux86-64 bin

 5.1 Release Notes 38

areas.

See the PGI Tools Guide for a complete description of the usage and
capabilities of PGDBG and PGPROF.

3.7 Problems Corrected in Release 5.1

The following problems are corrected in the current release. A description
of the problem is given, but some problems can only be described in
general terms because of complexity or confidentiality.

PGI Cluster Development Kit 5.1 39

Technical Problem Reports (TPRs) Corrected in PGI Release 5.1-3
TPR Rel Lang Description Symptom
2840 4.0 pgCC pgCC bug.c

 causes severe errors

PGCC-ICE error.
getsname:

2862 4.0 pgf90 module mymodule
integer, public,parameter::n=10
 integer, private :: i
 type, public :: mytype
 integer :: array(n)
 end type mytype
 type, public :: yourtype
 integer :: array(n)
 end type yourtype
 type, public :: histype
 integer :: array(n)
 end type histype
 type(mytype), public,
parameter :: myex = mytype
((/(0,i=1,n)/))
 type(yourtype), public,
parameter :: &
yourex = yourtype (myex %array)
 type(histype), public,
parameter ::hisex = histype(0)
end module mymodule
program main
 use mymodule
 write(*,*) myex
 write(*,*)
 write(*,*) yourex
 write(*,*)
 write(*,*) hisex
 write(*,*)
 stop
end program main

 PGF90-S-0069-Illegal
implied DO expression
(bug1.f90: 22)
PGF90-S-0000-
Internal compiler
error.
_dinit_acl,array
29

2997 5.0 pgcc #include <search.h>
char * key1 = "entry1";
char * key2 = "entry2";
int main ()
{
 int size;
 ENTRY entry1;
 ENTRY entry2;
 ENTRY * e;
 size = 100;
 if (!hcreate(size)) {
 printf("error creating hash
table\n");
 return 1;
 }
 entry1.key = key1;
 entry2.key = key2;
 e = hsearch(entry1, FIND);
 if (e)
 printf("found %s\n", e-
>key);

gcc passes small
structs
differently on
Opteron than
larger structs. We
have fixed this to
be compatible with
gcc.

Program seg faults
on Opterons.

 5.1 Release Notes 40

 else
 printf("not found\n");
 e = hsearch(entry1, ENTER);
 e = hsearch(entry2, ENTER);
 e = hsearch(entry1, FIND);
if(e)
 printf("found %s\n", e->key);
 e = hsearch(entry2, FIND);
 if (e)
 printf("found %s\n", e->key);
 hdestroy();return 0;
}

PGI Cluster Development Kit 5.1 41

3005 5.0 pgf77 users program worked with g77,
not with pgf77.

-mcmodel=medium
failing

3007 5.0 all openmp programs properly warn
when cpu count is less than
thread count. MP_WARN
flag prevents the message

Annoying warning
message

3009 5.0 pgcc Problem with programs built by
inlining alloca.

GCC test fails
with -Minline

3011 5.0 pgf90 program test
character*4 C50
character c*4(50)
end

 The c*4(50)
format was not
accepted.

3022 5.0 fortr
an

problems with –mcmodel=medium seg faults,

3028 5.0 pgcc #include <stdlib.h>
> #include <time.h>
#include <sys/types.h>
#include <sys/times.h>
void main() {
 clock_t elp;
 ldiv_t res;
 struct tms itim;
 elp += times(&itim);
 res = ldiv(elp, CLK_TCK);
}

seg faults due to
small structs

3034 5.0 pgCC #include <stdio.h>
struct {
 void Add_Unique(int gn)
{printf ("gn = %d\n", gn);}
} node_connectivity[1];
struct {
 int Global_Number ()
{return 6067;}
 int Index () {return 0;}
} inode;
static int inverse_map[1] =
{0};
main () {
 int
iv=inverse_map[inode.Index()];
 if(iv>=0)
node_connectivity[iv].Add_Uniqu
e(inode.Global_Number());
}

seg faults when
compiled
pgCC –O2 x.C

3035 5.0 pgf90 integer in,iam
 logical doit
 doit=.true.
 in=1
 iam=1
 IN1=1
 if(in.eq.IN1 .or. iam.ne.0
.or. .not.doit)then
 Print *,'in loop 1'
 endif
 if(.not.doit .or. in.eq.IN1

Progra,m fails if
compiled with –i8

 5.1 Release Notes 42

.or. iam.ne.0)then
 Print *,'in loop 2'
 endif
 jj=0
 if(in.eq.IN1) jj=1
 if(iam.ne.0) jj=2
 if(.not.doit) jj=3
if(jj.ne.0)Print*,'in loop 3'
 stop
 end

PGI Cluster Development Kit 5.1 43

3037 5.0 pgf90 Added new f95 syntax to
external stmt
external xx,yy !f90 syntax

external :: xx,yy ! f95 syntax

reported error on
second format.

3038 4.1 pgcc #include <stdio.h>
void main() {
int guard;
unsigned char next,val;
 guard = 0;
 val = 0x80;
 next = val << 1;
 if (next) {guard = 1;}
 printf("%d\n", guard);
}

pgcc –O1 foo.c
prints ‘1’
pgcc –O0 foo.c
prints ‘0’

3039 5.0 pgf77 program fails with pgf77 -fast ICE when compiled
pgf77 –fast bad.f

3041 5.0 fortr
an

Function IRTyp(W)
Implicit Real*8(A-H,O-Z)
Dimension W(3,4), IOrd(5)
Save IOrd, One
Data IOrd/2,3,4,6,1/, One/1.d0/
Call TrDet(TrI,DetI,W)
ITr = ANInt(TrI)
Det = ANInt(DetI)
IS = Sign(One,Det)
IRTyp = IS*IOrd(IS*ITr+2)
End

ICE with –fastsse
–tp p7

3042 5.0 pgf90 PROGRAM testing
implicit none
structure /mystruct/
 integer*4 i1,i2,i3,i4,toomuch
end structure
record /mystruct/ s1,t1,t2
common /t_cmn/ t1,t2
s1.i1 = 101
s1.i2 = 102
t1 = s1
t2 = t1
print *, 'out:', s1.i1, t1.i1,
t2.i1
END

Output differs
when compiled with
or without
-fpic

3043 4.1 pgf90 program caused ICE %pgf90 -c -O BHS.f
Lowering Error:
symbol sinv$sd is
a member reference

3048 5.0 pgf90 64-bit pgcc sizeof(sizeof())
should return 8

 sizeof(sizeof())
returns 4

3049 5.0-b pgf90 program foo
integer(8) :: i
real(8), dimension(1000) :: x
x(:) = 1.0
print *, (x(i),i=1,400)
end

implicit do loop
failed with
integer*8 index

 5.1 Release Notes 44

3051 5.0 pgf90 CASE stmt with DEFAULT not last
case fails.

MCNP5 fails

3053 5.0 pgf90 solved by 3041 ICE (stack87pos)
3059 5.0 pgf90 MODULE pure_sub_mod

 IMPLICIT NONE
 CONTAINS
 PURE SUBROUTINE pure_sub(a)
IMPLICIT NONE
INTEGER, INTENT(INOUT) :: a
 a=a*2
END SUBROUTINE pure_sub
END MODULE pure_sub_mod
MODULE module_mod
IMPLICIT NONE
CONTAINS
PURE SUBROUTINE
another_pure_sub(b,pure_sub)
IMPLICIT NONE
INTEGER, INTENT(INOUT) :: b
INTERFACE
PURE SUBROUTINE pure_sub(a)
IMPLICIT NONE
INTEGER, INTENT(INOUT) :: a
END SUBROUTINE pure_sub
END INTERFACE
CALL pure_sub(b)
 b=b*2
END SUBROUTINE another_pure_sub
END MODULE module_mod
PROGRAM test_PURE_error_prog
USE module mod,ONLY:
another_pure_sub
USE pure_sub_mod,ONLY: pure_sub
IMPLICIT NONE
INTEGER :: a
a=2
CALL another_pure_sub(a,pure_sub)
 PRINT *,a
END PROGRAM test_PURE_error_prog

ICE - alignment

3060 5.0 pgf90 Correct DWARF information. bad debug
information

3062 5.0 pgf90 Correct the DWARF information bad debug
information

3063 5.0 pgf90 Correct the DWARF information Bad debug
information

3064 5.0 pgf90 Correct the DWARF information Bad debug
information

3066 5.0 pgf77 NPB LU fails with –fast . –
Munroll is the problem.

program fails to
compile
-fast

3067 5.0 64
MPI

NPB in CDK fails with CLASS=B mpich 64-bit
fails.

3068 5.0 pgCC program fials to compile compile failure
3069 5.0 pgf90 POP from lanl program fails.to

compile tavg.f90
compile failure

3075 4.1 pgf90 module tpg_mod
implicit none
public
integer,parameter,private::X1=5

bad answers from
trim()..

PGI Cluster Development Kit 5.1 45

contains
subroutine outer()
character(LEN=X1),dimension(:),
pointer :: plist
integer :: ierr
allocate(plist(8),STAT=ierr)
if (ierr.ne.0) then
write(6,*)'did not alloc plist'
stop
endif
plist(1) = "ONE "
plist(2) = "TWO " –and so on
plist(8) = "EIGHT"
call inner(plist(3:5))
end subroutine outer
subroutine inner(list)
character(LEN=X1),
dimension(:),intent(in)::list
 integer :: i
 do i=1,size(list)
 write(6,*) trim(list(i))
 enddo
end subroutine inner
end module tpg_mod
program test
 use tpg_mod

 call outer
implicit none

end program test
3076 5.0 pgf90 module foo_module

 integer dummy
 interface
subroutine assumed_shape6(xx)
integer five, negfour
common /bounds/ five, negfour
integer*4 xx(:,negfour:)
end subroutine assumed_shape6
 end interface
end module foo_module
program tx_f90_arrays
 use foo_module
integer*4,dim(20,10) ::array5
 integer i,j,k,l
integer five, negfour
 common /bounds/ five, negfour
do i = 0,19
 do j = 0,9
 array5(i+1,j+1) = j*20 + i + 1
 end do
 end do
call assumed_shape6(array5)
end program tx_f90_arrays
subroutine assumed_shape6(xxx)
 integer five, negfour
 common /bounds/ five, negfour
 integer*4 xxx(:,negfour:)
print*,lbound(xx,1),ubound(xx,1)
print*,lbound(xx,2),ubound(xx,2)
end subroutine assumed_shape6

ICE pgf90 -g

3082 5.0 pgf90 fails with –Mvect-sse ICE

 5.1 Release Notes 46

3.8 5.1-3 Problems/Limitations

What follows are some known problems and possible suggestions that
users may encounter. The FAQs at http://www.pgroup.com/faq/index.htm
will provide more up to date information.

Subject Description Correction/Workaround

Building MM5 Users report MM5
execution problems.

If libpgthread.so IS NOT a link
to libpthread.so, set
MPSTKZ to 256M or larger
if it IS a link,
limit stacksize 256M or larger

If compiling –fast or –fastsse,
add the switch –Mnolre

For compiling with linux86-64,
add the define
-DDEC_ALPHA
to your config file so that
pointers are stored in integer*8
variables rather than integer*4
variables.

flexlm license for
pgCC

license features can no
longer be case
sensitive.
The feature lines of the
pgCC product is now
shown as pgcpp. As a
result, 5.1 licenses will
NOT work with pre-5.1
pgCC compilers.

We have created new
versions of pgCC for
release 4.1 and 5.0, that will
accept the 5.1 license.
Contact trs@pgroup.com
for information.

Switch reminder All language switches
try to adhere to the gnu

Be careful.
-fast –Mnolre is different

PGI Cluster Development Kit 5.1 47

http://www.pgroup.com/faq/index.htm

convention that they are
executed left-to-right in
the order they appear.

from
-Mnolre –fast, for example.

pgf90 -Mipa
-Mipa=shape propagates shape information for assumed-
shape arrays;
-Mipa=shape is part of
-Mipa=fast, but can be disabled with
-Mipa=fast,noshape.
It will erroneously propagate shape information
even when the shape is not constant across multiple calls.
Example:
 subroutine s(x)
 real x(:,:)
 end subroutine
 subroutine y
 real y(10,10),z(20,20)
 call s(y)
 call s(z)
 end subroutine

-Mipa=const propagates constant array bounds into
adjustable array bounds. If the adjustable array is used in an
array assignment, the compiler might generate bad code.
Example:
 subroutine s(x,n)
 real x(n,n)
 x = 0.0
 end subroutine
 subroutine y
 real y(10,10)
 call s(y,10)

 end subroutine

3.9 AMD64 Large Array Support

Support for the medium memory model in the linux86-64 environment is
provided, with some limitations due to the PGI Workstation 5.1 compilers

 5.1 Release Notes 48

and some limitations that are inherent to the medium memory model itself.

The small memory model of the linux86-64 environment limits the
combined area for a user’s object or executable to 1GB, with the Linux
kernel managing usage of the second 1GB of address for system routines,
shared libraries, stacks, etc. Programs are started at a fixed address, and the
program can use a single instruction to make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss
sections. Program code for the medium memory model must be compiled
–fPIC, or position-independent, and will require additional instructions to
reference memory. The effect on performance is a function of the data-use
of the application.

The linux86-64 environment provides static libxxx.a archive libraries that
are built without –fPIC, and dynamic libxxx.so shared object libraries that
are compiled –fPIC. The –mcmodel=medium linker switch implies the
–fPIC switch and will utilize the shared libraries by default. Similarly, the
$PGI/linux86-64/5.1/lib directory contains the libraries for building small
memory model codes, and the $PGI/linux86-64/5.1/libso directory contains
shared libraries for building –mcmodel=medium and –fPIC executables.
Note: It appears from the GNU tools and documentation that creation of
medium memory model shared libraries is not supported. However, you
can create static archive libraries (.a) that are –fPIC.

3.9.1 Practical Limitations of –mcmodel=medium

The 64-bit address capability of the AMD64 technology can cause
unexpected problems when data sizes are enlarged significantly. For
example:

- Initializing a large array with a data statement may result in a very
large assembly file and object file, where a line of assembler source is
required for each element in the array initialized. Code compilation
and linking will be very time consuming as well. To avoid this time
and space-consuming problem, consider initializing large arrays in the
program area in a loop rather than in the declaration.

PGI Cluster Development Kit 5.1 49

- Stack space can be problem for data that is stack based. limit stacksize
unlimited can be used to enable as much stack space as possible, but it
will be limited nonetheless and is dependent on the amount of physical
memory. Determine if limit stacksize 512M gives as large a stack area
as unlimited.

- If your executable is much larger than the physical size of memory,
page swapping can cause it to run dramatically slower and it may even
fail. This is not a compiler problem. Try smaller data sets to determine
if a problem is due to page thrashing, or not.

- Be sure your linux86-64 system is configured with swap space
sufficiently large to support the data sets used in your application(s).
If your memory+swap space is not sufficiently large, your application
will likely encounter a segmentation fault at runtime.

Overall, it is important to understand the practical limitations of the
linux86-64 environment, and users should take reasonable care to
determine if a program failure is due a compiler limitation or an operating
system limitation.

3.9.2 Compiler Limitations of –mcmodel=medium

There are a number of limitations on large arrays that are not due to the
medium memory model, but are due to compiler limitations. Some of these
limitations are common between the GNU compilers (gcc and g77) and the
PGI Workstation 5.1 compilers, and some are specific to the PGI
Workstation 5.1 compilers.

1. Individual (static) data objects are still limited to less than 2GB in
size in PGF90, PGHPF and PGC++. PGF77 and PGCC now
support static data objects larger than 2GB. F77 applications that
use single data objects larger than 2GB must be compiled with
PGF77 using both the –mcmodel=medium and –Mlarge_arrays
options. C applications with large data objects need only be
compiled with PGCC using –mcmodel=medium. Support for
single data objects larger than 2GB will be added to the PGF90,

 5.1 Release Notes 50

PGHPF and PGC++ compilers in a future release.

2. PGF90 treats all local static data in a program as one collective
data object (it is aggregated into a single ELF section). In PGI
Workstation 5.1, section sizes in PGF90-compiled programs are
still limited to be less than 2GB in size. To utilize multiple very
large static arrays (aggregate greater than 2GB) using PGF90,
you will need to assign the large arrays to distinct COMMONs.
This limitation will be removed in a future release of the PGI
compilers and tools. As of Release 5.1, this limitation no longer
applies to PGF77.

3. Dynamically allocated arrays in C can be larger than 2GB, using
the malloc() operation to return a pointer in either PGCC or gcc.
PGF90, however, cannot ALLOCATE individual arrays of size
greater than 2GB. NOTE: no compile-time or pre-specified run-
time error will occur if you attempt to ALLOCATE an array larger
than 2GB using PGF90. 32-bit truncation will usually mask the
problems you encounter. If you pass a pointer to an array larger
than 2GB (for example by returning it to a Fortran program unit
from a called C program unit), you must access it very carefully.
Usually, the array should be referenced as if it is a one-
dimensional array. All referencing of multiple dimension arrays
within Fortran is restricted to a 32-bit index derived from the
individual indices of the array. Indexing into a dynamically
allocated 1-dimensional array, where the index is declared
INTEGER*8, will be successfully evaluated as a 64-bit address.

3.9.3 Large Array Example in C

Consider the following example, where the aggregate size of the arrays
exceeds 2GB.

% cat bigadd.c

#include <stdio.h>

#define SIZE 600000000 /* > 2GB/4 */

static float a[SIZE],b[SIZE];

PGI Cluster Development Kit 5.1 51

main() {
long long i,n,m;
float c[SIZE]; /* goes on stack */
n=SIZE;m=0;

 for(i=0;i<n;i+=10000){
 a[i]=i+1;
 b[i]=2.0*(i+1);
 c[i]=a[i]+b[i];
 m=i;
 }
 printf("a[0]=%g b[0]=%g c[0]=%g\n", a[0], b[0],
c[0]);
 printf("n=%d a[%d]=%g b[%d]=%g c[%d]= %g\n", n, m, m,
m, a[m], b[m], c[m]);
}

Compiled using gcc, without using –mcmodel=medium:

% gcc –o bigadd bigadd.c
/tmp/ccWt7q8Q.o: In function `main':
/tmp/ccWt7q8Q.o(.text+0x6e): relocation truncated to
fit: R_X86_64_32S .bss
/tmp/ccWt7q8Q.o(.text+0x8c): relocation truncated to
fit: R_X86_64_32S .bss

This is a link-time error, and is due to the linker attempting to create a
small memory model executable when the static arrays exceed the less than
1GB aggregate limit inherent in that model. Re-compiling using
–mcmodel=medium:

% gcc -mcmodel=medium -o bigadd bigadd.c
/tmp/ccVQpbPj.s: Assembler messages:
/tmp/ccVQpbPj.s:97: Error: .COMMon length (-2147483648.)
<0! Ignored.

The gcc compiler incorrectly converts a greater than 2G value to a negative
32-bit number in an assembler statement. This error does not occur using
pgcc 5.1:

% pgcc -mcmodel=medium -o bigadd bigadd.c

 5.1 Release Notes 52

Why? When SIZE is greater than 2G/4, and the arrays are of type float
with 4 bytes per element, the size of each array is greater than 2GB. With
5.1 pgcc, using the –mcmodel=medium switch, a static data object can now
be > 2GB in size. Note that if you execute with the above settings in your
environment, you may see the following:

% bigadd
Segmentation fault

Execution fails because the stack size is not large enough. Try resetting the
stack size in your environment:

% limit stacksize 3000M

Note that ‘limit stacksize unlimited’ will probably not
provide as large a stack as we are using above.

% bigadd
a[0]=1 b[0]=2 c[0]=3
n=600000000 a[599990000]=5.9999e+08
b[599990000]=1.19998e+09 c[599990000]=1.79997e+09

The size of the bss section of the bigadd executable is now larger than
2GB:

% size --format=sysv bigadd | grep bss
.bss 4800000008 5245696
% size --format=sysv bigadd | grep Total
Total 4800005080

3.9.4 Large Array Example in Fortran

The following example needs preprocessing, and illustrates the major
difference between pgf90 and pgf77 in the 5.1 release. pgf90 and pgf77
both use 64-bit addresses when compiled –mcmodel=medium, but only
pgf77 allows for 64-bit integer index support.

Consider the following example:

PGI Cluster Development Kit 5.1 53

% cat matadd.f
 program matadd
 integer i, j, k, size, l, m, n
#if define (USE_PGF90)
 parameter (size=13000) ! 1GB<size<2GB
#else
 parameter (size=16000) ! >2GB
#endif
 parameter (m=size,n=size)
 real*8 a(m,n),b(m,n),c(m,n),d
#if define (USE_PGF90)
 common/aa/a
 common/bb/b
 common/cc/c
#endif
 do i = 1, m
 do j = 1, n
 a(i,j)=10000.0D0*dble(i)+dble(j)
 b(i,j)=20000.0D0*dble(i)+dble(j)
 enddo
 enddo
!$omp parallel
!$omp do
 do i = 1, m
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
!$omp do
 do i=1,m
 do j = 1, n
 d = 30000.0D0*dble(i)+dble(j)+dble(j)
 if(d .ne. c(i,j)) then
 print *,"err i=",i,"j=",j
 print *,"c(i,j)=",c(i,j)
 print *,"d=",d
 stop
 endif
 enddo
 enddo
!$omp end parallel
 print *, "M =",M,", N =",N

 5.1 Release Notes 54

 print *, "c(M,N) = ", c(m,n)
 end

When compiled with PGF90 using –mcmodel=medium:

% pgf90 -mp -o matadd matadd.f -mcmodel=medium

The PGF90 compiler places all local static data for a program in a single
section of the generated executable, and therefore the combined sizes
exceed the 2GB limit on any single section (in this case .bss) generated by
PGF90. This limitation is handled by

 common/aa/a
 common/bb/b
 common/cc/c

after a, b, and c are first declared. You can compile and execute as
follows:

% pgf90 -mp -o matadd –DUSE_PGF90 –Mpreprocess matadd.f
-mcmodel=medium
% setenv OMP_NUM_THREADS 2
% matadd
M = 13000 , N = 13000
c(M,N) = 390026000.0000000

For compiling with pgf77, we enlarge the array dimensions to create (>2GB) a very large
array, and compile with

% pgf77 –mp -o matadd matadd.f -mcmodel=medium
–Mlarge_arrays -fast
% setenv OMP_NUM_THREADS 2
% matadd
M = 16000 , N = 16000
c(M,N) = 480032000.0000000

On a 1.8 GHz Dual processor Opteron box with 4GB of memory, the
above example ran about 33% faster with OMP_NUM_THREADS set to
2, instead of 1.

PGI Cluster Development Kit 5.1 55

3.10 The PGI CDK 5.1 and libpthread

Previous releases of the PGI CDK Linux compiler products have included
a customized version of libpthread.so called libpgthread.so. The purpose of
this library is to give the user more thread stack space to run OpenMP and
–Mconcur compiled programs. With Release 8.0 Red Hat and equivalent
releases, we are seeing libpthread.so and libpthread.a with ‘re-sizeable’
thread stack areas. In these cases

1. The filename $PGI/linux86/5.1/lib/libpgthread.so is
a soft link to /usr/lib/libpthread.so.

2. Instead of ‘setenv MPSTKZ 256M’, for example, to
increase the libpgthread.so thread stack area, the

Linux system call ‘limit stacksize 256M’ will now

apply to thread stacks.

3.11 The PGI CDK 5.1 and glibc

Release 5.1 of the PGI CDK compilers and tools for linux86 are built and
validated under both the Linux 2.2.10 through 2.4.x kernels. Distributions
of Linux, from Red Hat 7.0 to 9.0 and SuSE 7.1 to 9.0, incorporate revision
2.2.10 or greater of the Linux kernel and glibc2.2.x or greater. If you are
using a version of Linux that is supported by the 5.1 CDK release, the PGI
installation script will automatically detect it. Your installation will be
modified as appropriate for these systems. While attempts are made to
handle mixtures of glibc versions and Linux releases, we may not correctly
install on a customized configuration, or work successfully because of it.
We do test the typical Linux configurations with glibc as they come from
the box.

 5.1 Release Notes 56

3.12 The PGI ACML, BLAS & LAPACK Libs

Precompiled versions of the ACML, BLAS and LAPACK math libraries
are included. libacml.a and libacml.so are included for AMD64 cpus and
Pentium 4 cpus with SSE/SSE2 instructions. libblas and liblapack are
available for all cpu types, and –FPIC versions for AMD64 machines.

A source for additional LAPACK documentation can be found at
http://www.cs.colorado.edu/~lapack .

3.13 OpenMP Tutorial

A self-guided online tutorial is available to help you become familiar with
how OpenMP parallelization directives. In particular, the tutorial takes the
user step by step through the process of parallelizing the NAS FT
benchmark using OpenMP directives. The tutorial can be found at:

 ftp://ftp.pgroup.com/pub/SMP

You can download this file using a web browser, and unpack the file using
the following commands:

 % gunzip fftpde.tar.gz
 % tar xvf fftpde.tar

Change directories to the fftpde sub-directory, and follow the instructions
in the README file.

3.14 Debugging with PGDBG

4. pgdbg 5.1, like the compilers, comes in two versions: linux86
and linux86-64 . On the AMD64 Technology systems running
a linux86-64 environment, users can debug a 32-bit
application and a 64-bitapplication on the same system, and
the same process and thread controls are available. The notes
below apply to both versions. Only the linux86-64
environment can run the linux86-64 version of pgdbg. address.

PGI Cluster Development Kit 5.1 57

http://www.cs.colorado.edu/~lapack

3.14.1 PGDBG 5.1 Features

Note: Most of this information was also in the PGI CDK 4.0 Release
Notes. It is present here and will be part of the PGDBG User’s Guide in a
future release, and will not be removed from the release notes until it has.
PGDBG has had a number of corrections, and it now is supported under
ssh, but beyond that the features have not changed from 4.0.

PGDBG 5.1 can debug SMP OpenMP (or Linux pthread) programs, as well
as multiprocess cluster programs executed via mpirun. The PGI license file
restricts the total number of threads and processes that PGDBG will debug.

PGDBG 5.1 supports ssh as well as rsh . A new environment variable,
PGRSH, should be set to ssh or rsh, to indicate the communication
needed.

PGDBG's parallel debug capabilities are extensively documented at
http://www.pgroup.com/docs.htm or at $PGI/doc/index.htm. This
documentation is intended to supplement Chapter 15 of the PGI User’s
Guide.

The following enhancements are included in PGDBG 5.1:

• Combined Multi-process and Multi-thread Support

• SSH support

- be sure to ‘export PGRSH=ssh’

• Multi-process Support

- Process Ids obtained from mpirun
- Same source and debug info used for all processes
- full process control
- process grouping
- informative messages regarding state and location

• Process Control

- concise control of groups of processes

 5.1 Release Notes 58

- process synchronization
- configurable process stop and wait modes
- serial, and process-only debug modes

• OpenMP & Linuxthread Support

- threads identified by OpenMP logical CPU ID
- automatic thread detection and attach
- full thread control in parallel regions
- thread grouping
- line level debugging preserved when a thread

- enters a parallel region
- enters a serial region
- hits an OpenMP barrier
- hits an OpenMP synchronize statement
- enters an OpenMP sections program section

- informative messages regarding thread state and location

• Thread Control

- concise control of groups of threads
- thread synchronization
- configurable thread stop and wait modes
- serial, and threads-only debug modes

• GUI Enhancements

- Thread sub-window. Lists each thread by its logical CPU
ID. Displays for each thread its state and stop location.
Threads are grouped by parent process.

- Program I/O sub-window. Pops up automatically when
program prints to stdout. The program I/O sub-window
can also be raised from the Window menu.

- Output written to stdout by the process being debugged is
no longer block buffered.

- process grid. Displays each process as a color coded
button in a grid. Click on a grid element to refresh the
GUI in the scope of that process. Each grid element is
numbered with the process's logical ID.

- Process grouping. Control processes in groups
- Thread grid. Displays each thread as a color coded

PGI Cluster Development Kit 5.1 59

button in a grid. Click on a grid element to refresh the
GUI in the scope of that thread. Each grid element is
numbered with the thread's logical CPU ID.

- Thread grouping. Control threads in groups.

• Other Enhancements

5. Better support for Fortran arrays and pointersaddress.

3.14.2 PGDBG 5.1 Technical Information

Here are a number of details not documented in the PGDBG User’s Guide.

3.14.2.1 Threads and Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded
program, and passes them on according to that signal's disposition
maintained by PGDBG (see the catch, ignore commands).

If a thread runs into a busy loop, or if the program runs into deadlock,
control-C over the debugging command line to interrupt the threads. This
causes SIGINT to be sent to all threads. By default PGDBG does not relay
SIGINT to any of the threads, so in most cases program behavior is not
affected.

Sending a SIGINT (control-C) to a program while it is in the middle of
initializing its threads (calling omp_set_num_threads(), or entering a
parallel region) may kill some of the threads if the signal is sent before
each thread is fully initialized. Avoid sending SIGINT in these situations.
When the number of threads employed by a program is large, thread
initialization may take a while.

3.14.2.2 Signals Used by Internally by PGDBG

SIGTRAP indicates a breakpoint has been hit. A message is displayed
whenever a thread hits a breakpoint. SIGSTOP is used internally by

 5.1 Release Notes 60

PGDBG. Its use is mostly invisible to the user. Changing the disposition of
these signals in PGDBG will result in undefined behavior.

6. Reserved Signals: On linux86, the thread library uses SIGRT1,
SIGRT3 to communicate among threads internally. In the absence
of real-time signals in the kernel, SIGUSR1, SIGUSR2 are used.
Changing the disposition of these signals in PGDBG will result in
undefined behavior.

3.14.3 Scoping

Nested Subroutines

To reference a nested subroutine you must qualify its name with the name
of its enclosing function using the scoping operator @.

For example:

subroutine subtest (ndim)
integer(4), intent(in) :: ndim
integer, dimension(ndim) :: ijk
call subsubtest ()
contains
 subroutine subsubtest ()
 integer :: I
 i=9
 ijk(1) = 1
 end subroutine subsubtest
 subroutine subsubtest2 ()
 ijk(1) = 1
 end subroutine subsubtest2
end subroutine subtest
program testscope
integer(4), parameter :: ndim = 4
call subtest (ndim)
end program testscope

PGI Cluster Development Kit 5.1 61

pgdbg> break subtest@subsubtest
breakpoint set at: subsubtest line: 8 in "ex.f90" address:
0x80494091
pgdbg> names subtest@subsubtest
i = 0
pgdbg> decls subtest@subsubtest
arguments:
variables:
integer*4 i;
pgdbg> whereis subsubtest
function: "ex.f90"@subtest@subsubtest

Fortran 90 Modules

To access a member mm of a Fortran 90 module M you must qualify mm
with M using the scoping operator @. If the current scope is M the
qualification can be omitted.

For example:

module M
implicit none
real mm
contains
subroutine stub
print *,mm
end subroutine stub
end module M

program test
use M
implicit none
call stub()
print *,mm
end program test

 5.1 Release Notes 62

7. pgdbg> Stopped at 0x80494e3, function MAIN, file M.f90, line
13
#13: call stub()
pgdbg> which mm
"M.f90"@m@mm
pgdbg> print "M.f90"@m@mm
0
pgdbg> names m
mm = 0
stub = "M.f90"@m@stub
pgdbg> decls m
real*4 mm;
subroutine stub();
pgdbg> print m@mm
0
pgdbg> break stub
breakpoint set at: stub line:6 in "M.f90" address: 0x8049446 1
pgdbg> c
Stopped at 0x8049446, function stub, file M.f90, line 6
Warning: Source file M.f90 has been modified more recently than
object file
#6: print *,mm
pgdbg> print mm
0
pgdbg>

3.14.4 Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first
instruction contained by a lexical block indicates the start scope of the
lexical block.

Below variable var is declared in the lexical block starting at line 5. The
lexical block has the unique name "lex.c"@main@5. The variable var
declared in "lex.c"@main@5 has the unique name "lex.c"@main@5@var.

PGI Cluster Development Kit 5.1 63

For Example:

lex.c:
main()
{
 int var = 0;
 {
 int var = 1;
 printf("var %d\n",var);
 }
 printf("var %d\n",var)
}

8. pgdbg> n
Stopped at 0x8048b10, function main, file
/home/pete/pgdbg/bugs/workon3/ctest/lex.c, line 6
#6: printf("var %d\n",var);
pgdbg> print var
1
pgdbg> which var
"lex.c"@main@5@var
pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var
pgdbg> names "lex.c"@main@5
var = 1

3.14.5 Private Variables

PGDBG understands private variables with some restrictions. In particular,
inspecting private variables while debugging FORTRAN programs is not
supported.

Private variables in C must be declared in the enclosing lexical block of the
parallel region in order for them to be visible using PGDBG.

 5.1 Release Notes 64

For example:

{
 #pragma omp parallel
 {
 int i;
 ...
 /* i is private to 'this' thread */
 ...
 }
}

In the above case, i would be visible inside PGDBG for each thread.
However, in the following example, i is not visible inside PGDBG:

{
 int i;
 #pragma omp parallel private(i)
 {
 ...
 /* i is private to 'this' thread
 but not visible within PGDBG */
 ...
 }
}

9. A private variable of a Thread A is accessed by switching the
current thread to A, and by using the name (qualified if necessary)
of the private variable.

3.14.6 Graphical User Interface (GUI) Notes

PGI Cluster Development Kit 5.1 65

3.14.6.1 Setting the Font

Use the xlsfonts command to list all fonts installed on your
system, then choose one you like. For this example, we choose a
sony font that is completely specified by the following string:

-sony-fixed-medium-r-normal—24-230-75-75-c-120-iso8859-
1

There are two ways to set the font that your PGDBG GUI uses.

1. Use your .Xresources file:

Xpgdbg*font : <chosen font>
pgdbg*font : <chosen font>

For example:

pgdbg*font : -sony-fixed-medium-r-normal--24-230-75-75-
c-120-iso8859-1

You will have to merge these changes into your X environment
for them to take effect. You can use the following command:

 % xrdb -merge $HOME/.Xresources

2. Use the command line options : −fn . For example:

% pgdbg -fn -sony-fixed-medium-r-normal--0-0-100-100-c-0-
jisx0201.1976-0...

3.14.6.2 Control-C from GUI

The active window must be the command window (upper window) where
the PGDBG prompt appears for control-C to interrupt the program being
debugged. interrupt the program being debugged.

 5.1 Release Notes 66

3.14.6.3 Shared Object Files

PGDBG supports debugging of dynamically linked executables that
reference shared object files created using the compilers. If the executable
being debugged is dynamically linked, PGDBG will report when each
shared object is loaded and/or unloaded.

For example:

 pgdbg> ...
 pgdbg> n
 Stopped at 0x8048bee, function main, file
 dynload.c, line 36
 #36: handle = dlopen("libpetesSO2.so",RTLD_NOW);
 pgdbg> n
 libpetesSO2.so loaded by ld-linux.so.2.
 Stopped at 0x8048c31, function main, file
 dynload.c, line 41
 #41: if (handle){
 pgdbg> n
 Stopped at 0x8048c37, function main, file
 dynload.c, line 42
 #42: dlclose(handle);
 pgdbg> n
 libpetesSO2.so unloaded by ld-linux.so.2.
 Stopped at 0x8048c42, function main, file
 dynload.c, line 45
 #45: }
 pgdbg> ...

The global symbols defined by a dynamically linked shared object are
visible during a PGDBG debug session. These symbols are currently
available only without type and line number information. The machine
level PGDBG commands (breaki, dump, hwatch, disasm, etc) are useful
for inspecting these symbols. Each symbol is available with respect to the
load status of its defining shared object.

For example, dynamically-linkable Position Independent Code (PIC) is
implemented using a Procedure Linkage Table (PLT) and Global Offset
Table (GOT). Each PIC function is bound lazily at run-time. If a function
has not been linked dynamically, PGDBG reports the address of its PLT

PGI Cluster Development Kit 5.1 67

entry as its address. If a function has been linked dynamically, PGDBG
reports the virtual address of the function itself. So, PGDBG reports the
current or “effective” address of symbols with respect to dynamic linking
and loading. PGDBG treats global symbols defined in shared objects in a
similar way. The address of a global variable may be the address of its
GOT entry or an absolute address, depending in part on its load status.

 5.1 Release Notes 68

4 PGHPF 5.1

PGHPF 5.1 is PGI’s native (HPF-to-assembly code) High Performance
Fortran compiler for linux86 and linux86-64 environments. All features of
Full HPF 1.1 and Fortran 90 are supported, with the few exceptions noted
in this document. In addition, several new HPF 2.0 and HPF/JA features
have been added in this release. Section 4.1 below for a list of features,
which is a continuation of the 5.1 release information. If you encounter
any feature that is not supported, and not listed in section 4.3, Restrictions,
please consider it a bug and report it to PGI at the e-mail address
trs@pgroup.com.

4.1 Summary of Changes

The following features have been added to PGHPF 5.1 for IA-32 systems:

• HPF/JA feature - support for REDUCTION type in INDEPENDENT
clauses, including the new reduction operators FIRSTMAX, LASTMAX,
FIRSTMIN, and LASTMIN and relaxation of the restrictions on
allowable forms of references to reduction variables when the
reduction type is specified.

• HPF 2.0 feature – support for the approved extension form of the ON
directive, restricted to the body of an INDEPENDENT loop

• HPF 2.0 feature – the HPF library procedures SORT_UP and
SORT_DOWN are now supported

PGI Cluster Development Kit 5.0 69

• Reductions in nested INDEPENDENT loops are now supported

• Constraints on the order of HPF mapping directives have been
eliminated

• Scaling analysis of HPF programs using PGPROF 5.1 – see section
3.12.1 for more information on this feature

4.2 Restrictions

This section lists Fortran 90 and HPF features that are not supported in
PGHPF 5.1.

Type Restriction

Fortran 90 Pointers • Objects with the POINTER attribute cannot be
DYNAMIC

• Objects with the TARGET attribute cannot have CYCLIC
or CYCLIC(N) distributions. It may not be possible to
detect this at compile-time in all cases, for example
when a CYCLIC actual argument is passed to a dummy
with the TARGET attribute

• A scalar POINTER cannot be associated with a
distributed array element. For example

 integer, pointer :: p
 integer, target :: a(10),b(10)
!hpf$ distribute (block) :: a
 p=> a(1) ! unsupported
 p => b(1) ! supported
 end

• A POINTER dummy variable cannot be used to declare
other variables such as automatic arrays using the

 PGHPF 70

lbound(), ubound() and size() intrinsics. For
example:

 subroutine sub(p)
 integer, pointer, dimensions(:,:) ::
p
 integer, dimension(lbound(p,1): &
+ubound(p,1),size(p,2)) :: a ! does
not work

Fortran 90 Derived
Types

The DATA statement does not work with arrays of derived type.
As a work-around, use entity-style initialization.

Named Constants Named multi-dimensional array constants cannot be subscripted
to yield a constant value. For example, given the declaration:

 INTEGER, PARAMETER, DIMENSION(2,2) ::
 & X = RESHAPE((/1,2,3,4/),(/2,2/))

the following will not work:

 INTEGER, PARAMETER :: Y = X(1,2) ! Will
not work

Because of this restriction, named multi-dimensional array
constants cannot be used in:

• Values in CASE statements

• KIND parameters in declaration statements

• KIND arguments to intrinsics

Initial values in parameter statements or type declaration
statements

PGI Cluster Development Kit 5.0 71

HPF Library The HPF_LIBRARY routines GRADE_UP, GRADE_DOWN,
SORT_UP and SORT_DOWN require a DIM argument. These
routines do not support cyclic distributions of the selected
dimension.

PURE Procedures The PGHPF 5.1 implementation of PURE conforms to the HPF
2.0 language specification, with the following exception: in
PURE subroutines PGHPF will not generate any communication
for distributed COMMON variables or distributed MODULE
variables. The user is advised to pass distributed COMMON
variables as arguments to a PURE subroutine, or use non-
distributed COMMON variables.

Optional
Arguments

An F90 optional argument cannot be used as an align-target for
any variable that is not also optional. If an alignee is present,
then the align-target must also be present.

DISTRIBUTE and
ALIGN

The following compile-time warning message:

PGHPF-W-301 – Non-replicated mapping for
character/struct/union array, char_table,
ignored (file.F: lineno)

indicates that PGHPF 5.1 ignores the distribution directives
applied to character arrays, arrays subject to SEQUENCE
directives, and NAMELIST arrays.

INDEPENDENT
loops

At present, only INDEPENDENT loops containing FORTRAN 77
constructs can be parallelized. In particular, the presence of
array assignments, WHERE statements, FORALL statements, and
ALLOCATE statements will eliminate INDEPENDENT loops from
consideration for parallelization.

 PGHPF 72

5 Contacting PGI & Online
Documentation

You can contact us at the following address:

The Portland Group Compiler Technology
STMicroelectronics,Inc.
9150 SW Pioneer Court
Suite H
Wilsonville, OR 97070

Or contact us electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

Online documentation is available by pointing your browser at either your
local copy of the documentation:

file:$PGI/doc/index.htm

or at our Web site:

http://www.pgroup.com

Contacting PGI 73

	Table of Contents
	1 PGI CDK 5.1 �Installation Notes
	Introduction
	Installing on Linux86 or Linux86-64
	Using FLEXlm on Linux

	2 Using the Open Source Cluster Utilities
	Running an MPI-CH Program
	More About PBS
	Linking with ScaLAPACK
	Testing and Benchmarking

	3 PGI CDK 5.1 Release Notes
	Supported Systems and Licensing
	PGI CDK 5.1 Contents
	New Features for 32-bit x86 and AMD64
	New Features Exclusive to AMD64
	New Compiler Options
	Getting Started
	New Linux Compiler Options

	PGDBG and PGPROF Support
	Problems Corrected in Release 5.1
	5.1-3 Problems/Limitations
	AMD64 Large Array Support
	Practical Limitations of –mcmodel=medium
	Compiler Limitations of –mcmodel=medium
	Large Array Example in C
	Large Array Example in Fortran

	The PGI CDK 5.1 and libpthread
	The PGI CDK 5.1 and glibc
	The PGI ACML, BLAS & LAPACK Libs
	OpenMP Tutorial
	Debugging with PGDBG
	PGDBG 5.1 Features
	PGDBG 5.1 Technical Information
	Threads and Signals
	Signals Used by Internally by PGDBG
	Scoping
	Lexical Blocks
	Private Variables
	Graphical User Interface (GUI) Notes
	Setting the Font
	Control-C from GUI
	Shared Object Files

	4PGHPF 5.1
	4.1Summary of Changes
	4.2Restrictions

	5 Contacting PGI & Online �Documentation

